更改

跳到导航 跳到搜索
添加86字节 、 2024年9月9日 (星期一)
无编辑摘要
第221行: 第221行:  
For the three state transition matrices listed above, their respective EI values are: 2 bits, 1 bit, and 0 bits. This shows that if more 0s or 1s appear in the transition probability matrix (i.e., if more of the row vectors are one-hot vectors, where one position is 1 and the others are 0), the EI value will be higher. In other words, the more deterministic the jump from one time to the next, the higher the EI value tends to be. However, this observation is not entirely precise, and more exact conclusions are provided in the following sections.
 
For the three state transition matrices listed above, their respective EI values are: 2 bits, 1 bit, and 0 bits. This shows that if more 0s or 1s appear in the transition probability matrix (i.e., if more of the row vectors are one-hot vectors, where one position is 1 and the others are 0), the EI value will be higher. In other words, the more deterministic the jump from one time to the next, the higher the EI value tends to be. However, this observation is not entirely precise, and more exact conclusions are provided in the following sections.
   −
==归一化==
+
==Normalization==
显然,EI的大小和状态空间大小有关,这一性质在我们比较不同尺度的[[马尔科夫链]]的时候非常不方便,我们需要一个尽可能不受尺度效应影响的[[因果效应度量]]。因此,我们需要对有效信息EI做一个归一化处理,得到和系统尺寸无关的一个量化指标。
+
Clearly, the magnitude of EI (Effective Information) is related to the size of the state space, which poses challenges when comparing Markov chains of different scales. To address this issue, we need a causal measure that is as independent of scale effects as possible. Therefore, we normalize EI to derive a metric that is independent of the system size.
   −
根据[[Erik Hoel]]和[[Tononi]]等人的工作,要用[[均匀分布]]即[[最大熵分布]]下的熵值,即<math>\log N</math>来做分母对EI进行归一化,这里的[math]N[/math]为状态空间[math]\mathcal{X}[/math]中的状态的数量<ref name="hoel_2013">{{cite journal|last1=Hoel|first1=Erik P.|last2=Albantakis|first2=L.|last3=Tononi|first3=G.|title=Quantifying causal emergence shows that macro can beat micro|journal=Proceedings of the National Academy of Sciences|volume=110|issue=49|page=19790–19795|year=2013|url=https://doi.org/10.1073/pnas.1314922110}}</ref>。那么归一化后的EI便等于:
+
According to the work of Erik Hoel and Tononi, the normalization process involves using the entropy under a uniform (i.e., maximum entropy) distribution as the denominator, which is [math]\log N[/math], where [math]N[/math] is the number of states in the state space [math]\mathcal{X}[/math][1]. Thus, the normalized EI becomes: Normalized EI=logNEI​
    
<math>
 
<math>
第230行: 第230行:  
</math>
 
</math>
   −
进一步定义归一化指标也称为'''有效性'''(effectiveness)。
+
This normalized metric is also referred to as ''effectiveness''.
   −
然而,在处理连续状态变量的时候,这种使用状态空间中状态数量的对数值进行归一化的处理方式并不是非常合适,因为这一状态数往往受到变量的维度和实数分辨率的影响。
+
However, when dealing with continuous state variables, normalizing EI by using the logarithm of the number of states in the state space may not be suitable, as the state number often depends on the dimensionality and the resolution of real numbers.
==确定性和简并性==
+
 
===EI的分解===
+
==Determinism and Degeneracy==
 +
===Decomposition of EI===
 
根据公式{{EquationNote|1}},我们发现,EI实际上可以被分解为两项,即:
 
根据公式{{EquationNote|1}},我们发现,EI实际上可以被分解为两项,即:
   第260行: 第261行:  
</math>
 
</math>
   −
这一项是一个平均的[[负熵]],为了防止其为负数,所以加上了[math]\log N[/math]<ref name="hoel_2013" />。Determinism能刻画整个转移矩阵的确定性:也就是说如果我们知道了系统当前时刻所处的状态,则我们能够推断出系统在下一时刻所处的状态的程度。为什么这么说呢?这是因为确定性这一项是所有行向量熵的平均值,再取一个负号。我们知道,当一个向量更靠近均匀分布的时候,它的熵就越大,相反,如果一个向量越靠近一个“独热”(one-hot)的向量,也就是这个向量中只有一个1,其它元素都是0,那么它的熵就越小。我们知道,马尔科夫概率转移矩阵的一个行向量的含义就代表系统从当前状态转移到各个不同状态的概率大小。那么,当平均的行向量负熵大的时候,也就是这个行向量的某一个单元概率为1,其它为0,这就意味着系统能够确定地转移到1对应的状态。
+
这一项是一个平均的[[负熵]],为了防止其为负数,所以加上了[math]\log N[/math]<ref name="hoel_2013">{{cite journal|last1=Hoel|first1=Erik P.|last2=Albantakis|first2=L.|last3=Tononi|first3=G.|title=Quantifying causal emergence shows that macro can beat micro|journal=Proceedings of the National Academy of Sciences|volume=110|issue=49|page=19790–19795|year=2013|url=https://doi.org/10.1073/pnas.1314922110}}</ref>。Determinism能刻画整个转移矩阵的确定性:也就是说如果我们知道了系统当前时刻所处的状态,则我们能够推断出系统在下一时刻所处的状态的程度。为什么这么说呢?这是因为确定性这一项是所有行向量熵的平均值,再取一个负号。我们知道,当一个向量更靠近均匀分布的时候,它的熵就越大,相反,如果一个向量越靠近一个“独热”(one-hot)的向量,也就是这个向量中只有一个1,其它元素都是0,那么它的熵就越小。我们知道,马尔科夫概率转移矩阵的一个行向量的含义就代表系统从当前状态转移到各个不同状态的概率大小。那么,当平均的行向量负熵大的时候,也就是这个行向量的某一个单元概率为1,其它为0,这就意味着系统能够确定地转移到1对应的状态。
    
我们定义一个马尔科夫链转移矩阵P的'''简并性'''为:
 
我们定义一个马尔科夫链转移矩阵P的'''简并性'''为:
2,365

个编辑

导航菜单