第439行: |
第439行: |
| </math> | | </math> |
| | | |
− | Where H(Pi) is the entropy of row vector Pi. The maximum value of the first term is 0:<math>H(P_i)=-\sum_{j=1}^Np_{ij}\log p_{ij}</math>。分开来看,前一项式子最大值为0,即:
| + | The definition of entropy is: <math>H(P_i)=-\sum_{j=1}^Np_{ij}\log p_{ij}</math>. Looking separately, the maximum value of the previous equation is 0, that is: |
| | | |
| <math> | | <math> |
第445行: |
第445行: |
| </math> | | </math> |
| | | |
− | This occurs when Pi is a deterministic one-hot vector. Therefore, when all Pi are one-hot vectors, we have: | + | When <math>P_i</math> is a solitary heat vector without uncertainty, the equal sign of this equation holds. This occurs when Pi is a deterministic one-hot vector. Therefore, when all Pi are one-hot vectors, we have: |
| | | |
− | 当<math>P_i</math>为没有不确定性的独热向量时,该式子的等号成立。所以,当对所有的i都有<math>P_i</math>为独热变量时,有
| + | So, when <math>P_i</math> is the sole heating variable for all i, there is: |
| | | |
| <math> | | <math> |