第761行: |
第761行: |
| </math> | | </math> |
| | | |
− | 随机迭代系统的有效信息可以分解确定性和简并性为两项,
| + | The effective information of a random iterative system can be decomposed into two terms: |
| | | |
| <math> | | <math> |
第767行: |
第767行: |
| </math> | | </math> |
| | | |
− | 其中确定性
| + | Determinism: |
| | | |
| <math> | | <math> |
第773行: |
第773行: |
| </math> | | </math> |
| | | |
− | 描述系统前一时刻状态已知的情况下,后一时刻的随机性,确定性越强,随机性越小,越容易对系统未来趋势进行预测;
| + | '''Determinism''' describes the predictability of the system's future state based on the current state. The stronger the certainty, the smaller the randomness, and the easier it is to predict the future trend of the system. |
| | | |
− | 简并性:
| + | Degeneracy: |
| | | |
| <math> | | <math> |
第781行: |
第781行: |
| </math> | | </math> |
| | | |
− | 描述后一时刻已知的情况下,对前一时刻的可追溯性,简并性越弱,越容易推断系统以往的演化路径。其中,[math]\tilde{x}_{t+1}[/math]是保持因果机制不变,经过干预以后得到的新的[math]x_{t+1}[/math]变量。
| + | '''Degeneracy''' describes the ability to trace back the previous state from the current state. The weaker the degeneracy, the easier it is to infer the system's past evolutionary path. Among them, [math]\tilde{x}_{t+1}[/math] is a new [math]x_{t+1}[/math] variable obtained after intervention while keeping the causal mechanism unchanged. |
| | | |
− | 确定性越强,简并性越弱,有效信息则会越大,因果效应越强。
| + | The stronger the determinism and the weaker the degeneracy, the greater the effective information, leading to stronger causal effects. |
| | | |
− | 宏观有效信息与微观有效信息做差之后就可以得到随即迭代系统的因果涌现为:
| + | After subtracting the macro effective information from the micro effective information, the causal emergence of the iterative system can be obtained as follows: |
| | | |
| <math> | | <math> |
第792行: |
第792行: |
| | | |
| 其中,[math]W[/math]为粗粒化矩阵,它的阶数为n*m,m为宏观状态空间的维度,它的作用是把任意的微观态[math]x_t[/math]映射为宏观态[math]y_t[/math]。[math]W^{\dagger}[/math]为W的伪逆运算。式中第一项是由确定性引发的涌现,简称'''确定性涌现'''(Determinism Emergence),第二项为简并性引发的涌现,简称'''简并性涌现'''。更详细的内容参看[[随机迭代系统的因果涌现]]。 | | 其中,[math]W[/math]为粗粒化矩阵,它的阶数为n*m,m为宏观状态空间的维度,它的作用是把任意的微观态[math]x_t[/math]映射为宏观态[math]y_t[/math]。[math]W^{\dagger}[/math]为W的伪逆运算。式中第一项是由确定性引发的涌现,简称'''确定性涌现'''(Determinism Emergence),第二项为简并性引发的涌现,简称'''简并性涌现'''。更详细的内容参看[[随机迭代系统的因果涌现]]。 |
− |
| |
− | The effective information of a random iterative system can be decomposed into two terms: determinism and degeneracy.
| |
− |
| |
− | * '''Determinism''' describes the predictability of the system's future state based on the current state.
| |
− | * '''Degeneracy''' describes the ability to trace back the previous state from the current state.
| |
− |
| |
− | The stronger the determinism and the weaker the degeneracy, the greater the effective information, leading to stronger causal effects.
| |
| | | |
| ==前馈神经网络== | | ==前馈神经网络== |