更改

跳到导航 跳到搜索
添加149字节 、 2024年9月10日 (星期二)
无编辑摘要
第791行: 第791行:  
</math>
 
</math>
   −
其中,[math]W[/math]为粗粒化矩阵,它的阶数为n*m,m为宏观状态空间的维度,它的作用是把任意的微观态[math]x_t[/math]映射为宏观态[math]y_t[/math][math]W^{\dagger}[/math]为W的伪逆运算。式中第一项是由确定性引发的涌现,简称'''确定性涌现'''(Determinism Emergence),第二项为简并性引发的涌现,简称'''简并性涌现'''。更详细的内容参看[[随机迭代系统的因果涌现]]。
+
Among them, [math]W[/math] is a coarse-grained matrix with an order of n * m. m is the dimension of the macroscopic state space, and its function is to map any microscopic state [math]x_t[/math] to a macroscopic state [math]y_t[/math]. [math]W^{\dagger}[/math] is the pseudo inverse operation of W. The first term in the equation is the emergence caused by determinism, abbreviated as Deterministic Emergence, and the second term is the emergence caused by degeneracy, abbreviated as Degenerative Emergence. For more detailed information, please refer to the causal emergence of stochastic iterative systems.
   −
==前馈神经网络==
+
==Feedforward Neural Networks==
 
针对复杂系统自动建模任务,我们往往使用神经网络来建模系统动力学。具体的,对于前馈神经网络来说,[[张江]]等人推导出了前馈神经网络有效信息的计算公式<ref name="zhang_nis">{{cite journal|title=Neural Information Squeezer for Causal Emergence|first1=Jiang|last1=Zhang|first2=Kaiwei|last2=Liu|journal=Entropy|year=2022|volume=25|issue=1|page=26|url=https://api.semanticscholar.org/CorpusID:246275672}}</ref>,其中神经网络的输入是<math>x(x_1,...,x_n)</math>,输出是<math>y(y_1,...,y_n)</math>,并且满足<math>y=f(x)</math>,<math>f</math>是由神经网络实现的确定性映射。然而,根据公式{{EquationNote|5}},映射中必须包含噪声才能够体现不确定性。
 
针对复杂系统自动建模任务,我们往往使用神经网络来建模系统动力学。具体的,对于前馈神经网络来说,[[张江]]等人推导出了前馈神经网络有效信息的计算公式<ref name="zhang_nis">{{cite journal|title=Neural Information Squeezer for Causal Emergence|first1=Jiang|last1=Zhang|first2=Kaiwei|last2=Liu|journal=Entropy|year=2022|volume=25|issue=1|page=26|url=https://api.semanticscholar.org/CorpusID:246275672}}</ref>,其中神经网络的输入是<math>x(x_1,...,x_n)</math>,输出是<math>y(y_1,...,y_n)</math>,并且满足<math>y=f(x)</math>,<math>f</math>是由神经网络实现的确定性映射。然而,根据公式{{EquationNote|5}},映射中必须包含噪声才能够体现不确定性。
  
2,435

个编辑

导航菜单