同时有人指出,Hoel的理论忽略了对粗粒化方法的约束,某些粗粒化方法可能导致歧义<ref>Eberhardt, F., & Lee, L. L. (2022). Causal emergence: When distortions in a map obscure the territory. Philosophies, 7(2), 30.</ref>。此外,一些对状态的粗粒化操作和对时间的粗粒化操作的组合并不表现出[[可交换性]],例如假定<math>A_{m \times n}</math>是对状态进行粗粒化操作(将n个状态合并为m个状态),这里的粗粒化策略是使得宏观状态转移矩阵有效信息最大的策略,<math>(\cdot) \times (\cdot)</math> 是时间粗粒化操作(将两个时间步骤合并为一个)。这样[math]A_{m\times n}(TPM_{n \times n})[/math]就是对一个[math]n\times n[/math]的TPM做粗粒化,粗粒化过程就简化为矩阵[math]A[/math]与矩阵[math]TPM[/math]的乘积。 | 同时有人指出,Hoel的理论忽略了对粗粒化方法的约束,某些粗粒化方法可能导致歧义<ref>Eberhardt, F., & Lee, L. L. (2022). Causal emergence: When distortions in a map obscure the territory. Philosophies, 7(2), 30.</ref>。此外,一些对状态的粗粒化操作和对时间的粗粒化操作的组合并不表现出[[可交换性]],例如假定<math>A_{m \times n}</math>是对状态进行粗粒化操作(将n个状态合并为m个状态),这里的粗粒化策略是使得宏观状态转移矩阵有效信息最大的策略,<math>(\cdot) \times (\cdot)</math> 是时间粗粒化操作(将两个时间步骤合并为一个)。这样[math]A_{m\times n}(TPM_{n \times n})[/math]就是对一个[math]n\times n[/math]的TPM做粗粒化,粗粒化过程就简化为矩阵[math]A[/math]与矩阵[math]TPM[/math]的乘积。 |