第48行: |
第48行: |
| 上图为某种划分的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类状态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。 | | 上图为某种划分的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类状态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。 |
| | | |
− | 对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为因果态。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^← </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^← </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。 | + | 对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为因果态。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^← </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^← </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。因果态的划分映射可以记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。 |
| [[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]] | | [[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]] |
| 如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。 | | 如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。 |
第93行: |
第93行: |
| | | |
| 为了能够计算模型的统计复杂度[math]\displaystyle{ C_μ(x) }[/math],我们首先需要最大限度地压缩环境信息,因果态的性质恰好能满足这一需求,所以只要将环境信息转化为因果态,就能计算模型的统计复杂度。下面是因果态的三个主要性质: | | 为了能够计算模型的统计复杂度[math]\displaystyle{ C_μ(x) }[/math],我们首先需要最大限度地压缩环境信息,因果态的性质恰好能满足这一需求,所以只要将环境信息转化为因果态,就能计算模型的统计复杂度。下面是因果态的三个主要性质: |
− |
| |
− | 因果态的划分映射记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。
| |
| | | |
| 性质1(因果态具有最大预测性):对于所有划分得到的状态<math>\mathcal{R} </math>和正整数<math>L </math>,都有<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的[[条件熵]]。可以理解为因果态集合<math>\mathcal{S} </math>在划分得到的状态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强,证明过程如下: | | 性质1(因果态具有最大预测性):对于所有划分得到的状态<math>\mathcal{R} </math>和正整数<math>L </math>,都有<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的[[条件熵]]。可以理解为因果态集合<math>\mathcal{S} </math>在划分得到的状态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强,证明过程如下: |