更改

跳到导航 跳到搜索
添加2字节 、 2024年11月27日 (星期三)
第48行: 第48行:  
上图为某种划分的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类状态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。
 
上图为某种划分的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类状态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。
   −
对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为因果态。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^←  </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^←  </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。因果态的划分映射可以记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。
+
对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为因果态。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^←  </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^←  </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。
 +
 
 +
因果态的划分映射可以记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。
 
如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。
297

个编辑

导航菜单