更改

跳到导航 跳到搜索
添加39字节 、 2024年11月27日 (星期三)
第94行: 第94行:  
]]
 
]]
   −
为了能够计算模型的统计复杂度[math]\displaystyle{ C_μ(x) }[/math],我们首先需要最大限度地压缩环境信息,因果态的性质恰好能满足这一需求,所以只要将环境信息转化为因果态,就能计算模型的统计复杂度。下面是因果态的三个主要性质:
+
为了能够计算模型的统计复杂度[math]\displaystyle{ C_μ(x) }[/math],我们首先需要最大限度地压缩环境信息,同时保证它的预测能力最强,因果态的性质恰好能满足这一需求,所以只要将环境信息转化为因果态,就能计算模型的统计复杂度。下面是因果态的三个主要性质:
    
性质1(因果态具有最大预测性):对于所有划分得到的状态<math>\mathcal{R} </math>和正整数<math>L </math>,都有<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的[[条件熵]]。可以理解为因果态集合<math>\mathcal{S} </math>在划分得到的状态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强,证明过程如下:
 
性质1(因果态具有最大预测性):对于所有划分得到的状态<math>\mathcal{R} </math>和正整数<math>L </math>,都有<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的[[条件熵]]。可以理解为因果态集合<math>\mathcal{S} </math>在划分得到的状态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强,证明过程如下:
297

个编辑

导航菜单