| Klein等人<ref name=":0" />相当于使用贪婪算法对节点进行分组,但实质上该方法将分组和归并合并在一起执行了。这种方法对于大规模网络其效率很低。而Griebenow<ref name=":Griebenow"/>又提出了一种基于谱分解的方法来对原始网络节点进行分组,并将这种方法应用于[[偏好依附网络]]。相较于贪婪算法以及梯度下降算法,谱分解算法的计算时间更少,同时找到的宏观网络也更好(EI更大)。 | | Klein等人<ref name=":0" />相当于使用贪婪算法对节点进行分组,但实质上该方法将分组和归并合并在一起执行了。这种方法对于大规模网络其效率很低。而Griebenow<ref name=":Griebenow"/>又提出了一种基于谱分解的方法来对原始网络节点进行分组,并将这种方法应用于[[偏好依附网络]]。相较于贪婪算法以及梯度下降算法,谱分解算法的计算时间更少,同时找到的宏观网络也更好(EI更大)。 |
− | 所有这些粗粒化方法都使用了同样的节点与连边的归并方法。这就是高阶依赖项建模([[HOMs]]),其目的是为了保证分组后的宏观网络与原始的微观网络具有相同的随机游走动力学特性<ref>Xu, J., Wickramarathne, T. L., & Chawla, N. V. Representing higher-order dependencies in networks[J]. Science advances, 2016, 2(5), e1600028.</ref>。下面我们分别详细介绍这些粗粒化方法: | + | 所有这些粗粒化方法都使用了同样的节点与连边的归并方法。这就是高阶依赖项建模([[HOMs]]),其目的是为了保证分组后的宏观网络与原始的微观网络具有相同的随机游走动力学特性<ref name="HOMs">Xu, J., Wickramarathne, T. L., & Chawla, N. V. Representing higher-order dependencies in networks[J]. Science advances, 2016, 2(5), e1600028.</ref>。下面我们分别详细介绍这些粗粒化方法: |