更改

跳到导航 跳到搜索
添加1,719字节 、 2020年5月18日 (一) 17:41
第557行: 第557行:     
=== 适应度模型 ===
 
=== 适应度模型 ===
 +
Another model where the key ingredient is the nature of the vertex has been introduced by Caldarelli et al.<ref>Caldarelli G.,  A. Capocci, P. De Los Rios, M.A. Muñoz, Physical Review Letters 89, 258702 (2002)</ref> Here a link is created between two vertices <math>i,j</math> with a probability given by a linking function <math>f(\eta_i,\eta_j)</math> of the [[Fitness model (network theory)|fitnesses]] of the vertices involved.
 +
 
Caldarelli等人引入了另一个模型,其中关键成分是顶点的性质。<ref>Caldarelli G.,  A. Capocci, P. De Los Rios, M.A. Muñoz, Physical Review Letters 89, 258702 (2002)</ref>  两个顶点<math>i,j</math>之间的连接概率由连接函数<math>f(\eta_i,\eta_j)</math> 给出,该函数是网络节点[[适应性模型(图论)|适应性]]的函数。
 
Caldarelli等人引入了另一个模型,其中关键成分是顶点的性质。<ref>Caldarelli G.,  A. Capocci, P. De Los Rios, M.A. Muñoz, Physical Review Letters 89, 258702 (2002)</ref>  两个顶点<math>i,j</math>之间的连接概率由连接函数<math>f(\eta_i,\eta_j)</math> 给出,该函数是网络节点[[适应性模型(图论)|适应性]]的函数。
 +
 +
 +
The degree of a vertex i is given by <ref>Servedio V.D.P., G. Caldarelli, P. Buttà, Physical Review E 70, 056126 (2004)</ref>
 +
 +
:<math>k(\eta_i)=N\int_0^\infty f(\eta_i,\eta_j) \rho(\eta_j) \, d\eta_j </math>
 +
 
节点的度由下式给出<ref>Servedio V.D.P., G. Caldarelli, P. Buttà, Physical Review E 70, 056126 (2004)</ref>
 
节点的度由下式给出<ref>Servedio V.D.P., G. Caldarelli, P. Buttà, Physical Review E 70, 056126 (2004)</ref>
    
:<math>k(\eta_i)=N\int_0^\infty f(\eta_i,\eta_j) \rho(\eta_j) \, d\eta_j </math>
 
:<math>k(\eta_i)=N\int_0^\infty f(\eta_i,\eta_j) \rho(\eta_j) \, d\eta_j </math>
 +
 +
 +
If <math>k(\eta_i)</math> is an invertible and increasing function of <math>\eta_i</math>, then
 +
the probability distribution <math>P(k)</math> is given by
 +
 +
:<math>P(k)=\rho(\eta(k)) \cdot \eta'(k)</math>
    
如果<math>k(\eta_i)</math>是<math>\eta_i</math>的可逆递增函数,那么<math>P(k)</math>的概率分布为
 
如果<math>k(\eta_i)</math>是<math>\eta_i</math>的可逆递增函数,那么<math>P(k)</math>的概率分布为
    
:<math>P(k)=\rho(\eta(k)) \cdot \eta'(k)</math>
 
:<math>P(k)=\rho(\eta(k)) \cdot \eta'(k)</math>
 +
 +
 +
As a result, if the fitnesses <math>\eta</math> are distributed as a power law, then also the node degree does.
    
因此,如果适应性<math>\eta</math>是幂律分布,那么节点的度遵循幂律分布。
 
因此,如果适应性<math>\eta</math>是幂律分布,那么节点的度遵循幂律分布。
 +
 +
 +
Less intuitively with a fast decaying probability distribution as
 +
<math>\rho(\eta)=e^{-\eta}</math> together with a linking function of the kind
 +
 +
:<math> f(\eta_i,\eta_j)=\Theta(\eta_i+\eta_j-Z)</math>
    
不那么直观地,一个快速衰减的概率分布函数
 
不那么直观地,一个快速衰减的概率分布函数
第572行: 第595行:     
:<math> f(\eta_i,\eta_j)=\Theta(\eta_i+\eta_j-Z)</math>
 
:<math> f(\eta_i,\eta_j)=\Theta(\eta_i+\eta_j-Z)</math>
 +
 +
 +
with <math>Z</math> a constant and <math>\Theta</math> the Heavyside function, we also obtain
 +
scale-free networks.
    
其中 <math>Z</math> 是常数且 <math>\Theta</math> 是 Heavyside函数,我们同样得到了无标度网络。
 
其中 <math>Z</math> 是常数且 <math>\Theta</math> 是 Heavyside函数,我们同样得到了无标度网络。
 +
 +
 +
Such model has been successfully applied to describe trade between nations by using GDP as fitness for the various nodes <math>i,j</math> and a linking function of the kind
 +
<ref>Garlaschelli D., M I Loffredo Physical Review Letters 93, 188701 (2004)</ref>
 +
<ref>Cimini G., T. Squartini, D. Garlaschelli and A. Gabrielli, Scientific Reports 5, 15758 (2015)</ref>
 +
 +
:<math> \frac{\delta \eta_i\eta_j}{1+ \delta \eta_i\eta_j}.</math>
    
这样的模型在描述国际贸易上很成功,其中GDP作为不同节点的适应性 <math>i,j</math> ,并且连接函数是如下的形式
 
这样的模型在描述国际贸易上很成功,其中GDP作为不同节点的适应性 <math>i,j</math> ,并且连接函数是如下的形式
198

个编辑

导航菜单