第557行: |
第557行: |
| | | |
| === 适应度模型 === | | === 适应度模型 === |
| + | Another model where the key ingredient is the nature of the vertex has been introduced by Caldarelli et al.<ref>Caldarelli G., A. Capocci, P. De Los Rios, M.A. Muñoz, Physical Review Letters 89, 258702 (2002)</ref> Here a link is created between two vertices <math>i,j</math> with a probability given by a linking function <math>f(\eta_i,\eta_j)</math> of the [[Fitness model (network theory)|fitnesses]] of the vertices involved. |
| + | |
| Caldarelli等人引入了另一个模型,其中关键成分是顶点的性质。<ref>Caldarelli G., A. Capocci, P. De Los Rios, M.A. Muñoz, Physical Review Letters 89, 258702 (2002)</ref> 两个顶点<math>i,j</math>之间的连接概率由连接函数<math>f(\eta_i,\eta_j)</math> 给出,该函数是网络节点[[适应性模型(图论)|适应性]]的函数。 | | Caldarelli等人引入了另一个模型,其中关键成分是顶点的性质。<ref>Caldarelli G., A. Capocci, P. De Los Rios, M.A. Muñoz, Physical Review Letters 89, 258702 (2002)</ref> 两个顶点<math>i,j</math>之间的连接概率由连接函数<math>f(\eta_i,\eta_j)</math> 给出,该函数是网络节点[[适应性模型(图论)|适应性]]的函数。 |
| + | |
| + | |
| + | The degree of a vertex i is given by <ref>Servedio V.D.P., G. Caldarelli, P. Buttà, Physical Review E 70, 056126 (2004)</ref> |
| + | |
| + | :<math>k(\eta_i)=N\int_0^\infty f(\eta_i,\eta_j) \rho(\eta_j) \, d\eta_j </math> |
| + | |
| 节点的度由下式给出<ref>Servedio V.D.P., G. Caldarelli, P. Buttà, Physical Review E 70, 056126 (2004)</ref> | | 节点的度由下式给出<ref>Servedio V.D.P., G. Caldarelli, P. Buttà, Physical Review E 70, 056126 (2004)</ref> |
| | | |
| :<math>k(\eta_i)=N\int_0^\infty f(\eta_i,\eta_j) \rho(\eta_j) \, d\eta_j </math> | | :<math>k(\eta_i)=N\int_0^\infty f(\eta_i,\eta_j) \rho(\eta_j) \, d\eta_j </math> |
| + | |
| + | |
| + | If <math>k(\eta_i)</math> is an invertible and increasing function of <math>\eta_i</math>, then |
| + | the probability distribution <math>P(k)</math> is given by |
| + | |
| + | :<math>P(k)=\rho(\eta(k)) \cdot \eta'(k)</math> |
| | | |
| 如果<math>k(\eta_i)</math>是<math>\eta_i</math>的可逆递增函数,那么<math>P(k)</math>的概率分布为 | | 如果<math>k(\eta_i)</math>是<math>\eta_i</math>的可逆递增函数,那么<math>P(k)</math>的概率分布为 |
| | | |
| :<math>P(k)=\rho(\eta(k)) \cdot \eta'(k)</math> | | :<math>P(k)=\rho(\eta(k)) \cdot \eta'(k)</math> |
| + | |
| + | |
| + | As a result, if the fitnesses <math>\eta</math> are distributed as a power law, then also the node degree does. |
| | | |
| 因此,如果适应性<math>\eta</math>是幂律分布,那么节点的度遵循幂律分布。 | | 因此,如果适应性<math>\eta</math>是幂律分布,那么节点的度遵循幂律分布。 |
| + | |
| + | |
| + | Less intuitively with a fast decaying probability distribution as |
| + | <math>\rho(\eta)=e^{-\eta}</math> together with a linking function of the kind |
| + | |
| + | :<math> f(\eta_i,\eta_j)=\Theta(\eta_i+\eta_j-Z)</math> |
| | | |
| 不那么直观地,一个快速衰减的概率分布函数 | | 不那么直观地,一个快速衰减的概率分布函数 |
第572行: |
第595行: |
| | | |
| :<math> f(\eta_i,\eta_j)=\Theta(\eta_i+\eta_j-Z)</math> | | :<math> f(\eta_i,\eta_j)=\Theta(\eta_i+\eta_j-Z)</math> |
| + | |
| + | |
| + | with <math>Z</math> a constant and <math>\Theta</math> the Heavyside function, we also obtain |
| + | scale-free networks. |
| | | |
| 其中 <math>Z</math> 是常数且 <math>\Theta</math> 是 Heavyside函数,我们同样得到了无标度网络。 | | 其中 <math>Z</math> 是常数且 <math>\Theta</math> 是 Heavyside函数,我们同样得到了无标度网络。 |
| + | |
| + | |
| + | Such model has been successfully applied to describe trade between nations by using GDP as fitness for the various nodes <math>i,j</math> and a linking function of the kind |
| + | <ref>Garlaschelli D., M I Loffredo Physical Review Letters 93, 188701 (2004)</ref> |
| + | <ref>Cimini G., T. Squartini, D. Garlaschelli and A. Gabrielli, Scientific Reports 5, 15758 (2015)</ref> |
| + | |
| + | :<math> \frac{\delta \eta_i\eta_j}{1+ \delta \eta_i\eta_j}.</math> |
| | | |
| 这样的模型在描述国际贸易上很成功,其中GDP作为不同节点的适应性 <math>i,j</math> ,并且连接函数是如下的形式 | | 这样的模型在描述国际贸易上很成功,其中GDP作为不同节点的适应性 <math>i,j</math> ,并且连接函数是如下的形式 |