更改

跳到导航 跳到搜索
无编辑摘要
第1行: 第1行:    −
'''动力系统理论 Dynamical Systems Theory'''是数学领域中的一部分.主要在描述复杂的动力系统,一般会用微分方程或差分方程来表示。当采用微分方程时,该理论被称为“连续动力系统”,若用差分方程来表示,则称为“离散动力系统”。若其时间只在一些特定区域连续,在其余区域离散,或时间是任意的时间集合(像康托尔集),需要用时标微积分来处理。有时也会需要用混合的算子来处理,像微分差分。从物理学的角度来看,连续动力系统是经典力学的推广,也是运动方程的推广,不受极小作用原理[[欧拉-拉格朗日方程]]的约束。当采用差分方程时,该理论被称为[[离散动力系统]]。当时间变量运行在一个某些区间离散、其他区间连续的集合、或者像[[cantor集]]一样任意的时间集合上时,人们就能得到时间尺度上的动力方程。'''[[算子]](Operators)'''是一个函数空间到函数空间上的映射O:X→X,广义的讲,对任何函数进行某一项操作都可以认为是一个算子,如求幂次、求微分等。某些情况下,也可以用'''[[混合算子]](Mixed Operators)'''来建模,如微分-差分方程。
+
'''动力系统理论 Dynamical Systems Theory'''是数学领域中的一部分.主要在描述复杂的动力系统,一般会用微分方程或差分方程来表示。当采用微分方程时,该理论被称为“连续动力系统”,若用差分方程来表示,则称为“离散动力系统”。若其时间只在一些特定区域连续,在其余区域离散,或时间是任意的时间集合(像康托尔集),需要用时标微积分来处理。有时也会需要用混合的算子来处理,像微分差分。从物理学的角度来看,连续动力系统是经典力学的推广,也是运动方程的推广,不受极小作用原理[[欧拉-拉格朗日方程]]的约束。当采用差分方程时,该理论被称为[[离散动力系统]]。当时间变量运行在一个某些区间离散、其他区间连续的集合、或者像[[cantor集]]一样任意的时间集合上时,人们就能得到时间尺度上的动力方程。[[算子]](Operators)是一个函数空间到函数空间上的映射O:X→X,广义的讲,对任何函数进行某一项操作都可以认为是一个算子,如求幂次、求微分等。某些情况下,也可以用[[混合算子]](Mixed Operators)来建模,如微分-差分方程。
    
该理论涉及动力学系统的长期定性行为,研究了通常以机械或物理性质为主的系统(例如行星轨道和行星)的运动方程式的性质以及其常用的的解决方案,电子电路的求解方式以及[[生物学]],[[经济学]]等领域产生的系统。许多现代研究集中在[[混沌系统]]的研究上。
 
该理论涉及动力学系统的长期定性行为,研究了通常以机械或物理性质为主的系统(例如行星轨道和行星)的运动方程式的性质以及其常用的的解决方案,电子电路的求解方式以及[[生物学]],[[经济学]]等领域产生的系统。许多现代研究集中在[[混沌系统]]的研究上。
第9行: 第9行:  
==综述 ==
 
==综述 ==
   −
动力系统理论和'''[[混沌理论]](Chaos Theory)'''都是用来处理动力系统的长期定性行为的理论。一般而言,很难对动力系统方程进行精确求解,但是对这两个理论的研究重点不在于找到精确解,而是为了解答类似于如下的问题,如“系统长期来看是否会稳定下来,如果可以,那么可能的稳定状态是什么样的?”,或“系统长期的行为是否取决于其初始条件?”等。
+
动力系统理论和[[混沌理论]](Chaos Theory)都是用来处理动力系统的长期定性行为的理论。一般而言,很难对动力系统方程进行精确求解,但是对这两个理论的研究重点不在于找到精确解,而是为了解答类似于如下的问题,如“系统长期来看是否会稳定下来,如果可以,那么可能的稳定状态是什么样的?”,或“系统长期的行为是否取决于其初始条件?”等。
    
对给定动力系统的研究的一个重要方向就是求动力系统的不动点或'''稳态'''。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。
 
对给定动力系统的研究的一个重要方向就是求动力系统的不动点或'''稳态'''。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。
   −
动力系统的'''[[周期点]](Periodic Points)'''也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力(attactive)的。[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。
+
动力系统的[[周期点]](Periodic Points)也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力(attactive)的。[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。
    
即使是简单的非线性动力系统也常常表现出看似随机的行为,这种行为被称为'''混沌chaos'''<ref>{{cite journal |last=Grebogi |first=C. |last2=Ott |first2=E. |last3=Yorke |first3=J. |year=1987 |title=Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics |journal=[[Science (journal)|Science]] |volume=238 |issue=4827 |pages=632–638 |jstor=1700479 |doi=10.1126/science.238.4827.632 |pmid=17816542 |bibcode=1987Sci...238..632G }}</ref>。动力学系统中涉及混沌的清晰定义和研究的分支称为[[混沌理论]]。
 
即使是简单的非线性动力系统也常常表现出看似随机的行为,这种行为被称为'''混沌chaos'''<ref>{{cite journal |last=Grebogi |first=C. |last2=Ott |first2=E. |last3=Yorke |first3=J. |year=1987 |title=Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics |journal=[[Science (journal)|Science]] |volume=238 |issue=4827 |pages=632–638 |jstor=1700479 |doi=10.1126/science.238.4827.632 |pmid=17816542 |bibcode=1987Sci...238..632G }}</ref>。动力学系统中涉及混沌的清晰定义和研究的分支称为[[混沌理论]]。
第30行: 第30行:  
动力系统概念是对描述了一个点的位置在其周围环境中随时间变化的任何“固定”规则的数学形式化。举例来说,描述钟摆摆动、管道中的水流以及每年春天湖中鱼的数量的数学模型,都属于动力系统的概念范畴。
 
动力系统概念是对描述了一个点的位置在其周围环境中随时间变化的任何“固定”规则的数学形式化。举例来说,描述钟摆摆动、管道中的水流以及每年春天湖中鱼的数量的数学模型,都属于动力系统的概念范畴。
   −
动力系统的状态由实数的集合决定,或更一般地由适当的状态空间中的点集决定。系统状态的微小变化对应于数字的变化。这些数字也是几何空间——'''流形 (Manifold)'''——的坐标组。动力系统的演化规律是一种固定的规则,它描述了从当前状态得出的未来状态。这个规则可以是确定性的(在给定的时间间隔内,有且仅有一个未来状态在当前状态之后出现),或随机性的(状态的演化受到随机因素的影响)。
+
动力系统的状态由实数的集合决定,或更一般地由适当的状态空间中的点集决定。系统状态的微小变化对应于数字的变化。这些数字也是几何空间——流形 (Manifold)——的坐标组。动力系统的演化规律是一种固定的规则,它描述了从当前状态得出的未来状态。这个规则可以是确定性的(在给定的时间间隔内,有且仅有一个未来状态在当前状态之后出现),或随机性的(状态的演化受到随机因素的影响)。
    
===动态主义 ===
 
===动态主义 ===
421

个编辑

导航菜单