更改

跳到导航 跳到搜索
删除164字节 、 2020年8月9日 (日) 17:02
第361行: 第361行:       −
=== 公制 Metric ===
+
=== 度量 Metric ===
    
Many applications require a [[metric (mathematics)|metric]], that is, a distance measure between pairs of points. The quantity
 
Many applications require a [[metric (mathematics)|metric]], that is, a distance measure between pairs of points. The quantity
第367行: 第367行:  
Many applications require a metric, that is, a distance measure between pairs of points. The quantity
 
Many applications require a metric, that is, a distance measure between pairs of points. The quantity
   −
许多应用程序需要一个度量单位,即两个点之间的距离度量单位。数量
+
许多应用需要一个度量,即点对之间的距离度量。这个量:
 
        第392行: 第391行:  
satisfies the properties of a metric (triangle inequality, non-negativity, indiscernability and symmetry). This distance metric is also known as the variation of information.
 
satisfies the properties of a metric (triangle inequality, non-negativity, indiscernability and symmetry). This distance metric is also known as the variation of information.
   −
满足度量的性质(三角不等式、非负性、不可分性和对称性)。这个距离度量也称为信息的变化。
+
满足度量的性质(三角形不等式、非负性、不可除性和对称性)。这种距离度量也称为信息的变化。
 
  −
 
           −
If <math>X, Y</math> are discrete random variables then all the entropy terms are non-negative, so <math>0 \le d(X,Y) \le H(X,Y)</math> and one can define a normalized distance
      
If <math>X, Y</math> are discrete random variables then all the entropy terms are non-negative, so <math>0 \le d(X,Y) \le H(X,Y)</math> and one can define a normalized distance
 
If <math>X, Y</math> are discrete random variables then all the entropy terms are non-negative, so <math>0 \le d(X,Y) \le H(X,Y)</math> and one can define a normalized distance
   −
如果数学 x,y / math 是离散随机变量,那么所有的熵项都是非负的,所以数学0 le d (x,y) le  Eta (x,y) / math 可以定义一个标准化距离
+
If 𝑋,𝑌 are discrete random variables then all the entropy terms are non-negative, so 0≤𝑑(𝑋,𝑌)≤𝐻(𝑋,𝑌) and one can define a normalized distance
 
      +
如果𝑋,𝑌是离散随机变量,那么所有熵项都是非负的,因此0≤𝑑(𝑋,𝑌)≤𝐻(𝑋,𝑌),可以定义一个标准化距离:
      第415行: 第411行:  
The metric <math>D</math> is a universal metric, in that if any other distance measure places <math>X</math> and <math>Y</math> close-by, then the <math>D</math> will also judge them close.<ref>{{cite journal|arxiv=q-bio/0311039|last1=Kraskov|first1=Alexander|title=Hierarchical Clustering Based on Mutual Information|last2=Stögbauer|first2=Harald|last3= Andrzejak|first3=Ralph G.|last4=Grassberger|first4=Peter|year=2003|bibcode=2003q.bio....11039K}}</ref>{{dubious|see talk page|date=November 2014}}
 
The metric <math>D</math> is a universal metric, in that if any other distance measure places <math>X</math> and <math>Y</math> close-by, then the <math>D</math> will also judge them close.<ref>{{cite journal|arxiv=q-bio/0311039|last1=Kraskov|first1=Alexander|title=Hierarchical Clustering Based on Mutual Information|last2=Stögbauer|first2=Harald|last3= Andrzejak|first3=Ralph G.|last4=Grassberger|first4=Peter|year=2003|bibcode=2003q.bio....11039K}}</ref>{{dubious|see talk page|date=November 2014}}
   −
The metric <math>D</math> is a universal metric, in that if any other distance measure places <math>X</math> and <math>Y</math> close-by, then the <math>D</math> will also judge them close.
+
The metric 𝐷 is a universal metric, in that if any other distance measure places 𝑋 and 𝑌 close-by, then the 𝐷 will also judge them close.
 
  −
数学公制 d / math 是一个通用的公制,因为如果任何其他距离公制把数学 x / math 和数学 y / math 放在附近,那么数学公制 d / math 也会把它们放在附近。
      +
度量𝐷是一种通用度量,即如果任何其他距离度量将𝑋和𝑌放在附近,则𝐷也将判断它们接近。
      第427行: 第422行:  
Plugging in the definitions shows that
 
Plugging in the definitions shows that
   −
插入定义表明
+
从如下定义可以看出:
      第441行: 第436行:  
In a set-theoretic interpretation of information (see the figure for [[Conditional entropy]]), this is effectively the [[Jaccard index|Jaccard distance]] between <math>X</math> and <math>Y</math>.
 
In a set-theoretic interpretation of information (see the figure for [[Conditional entropy]]), this is effectively the [[Jaccard index|Jaccard distance]] between <math>X</math> and <math>Y</math>.
   −
In a set-theoretic interpretation of information (see the figure for Conditional entropy), this is effectively the Jaccard distance between <math>X</math> and <math>Y</math>.
+
In a set-theoretic interpretation of information (see the figure for Conditional entropy), this is effectively the Jaccard distance between 𝑋 and 𝑌.
 
  −
在对信息的集合论解释中(见条件熵图) ,这实际上是数学 x / 数学和数学 y / 数学之间的雅可比相似度系数。
      +
在信息的集合论解释中(参见条件熵的图),这实际上就是𝑋和𝑌之间的Jaccard距离。
      第464行: 第458行:  
is also a metric.
 
is also a metric.
   −
也是一个度量标准。
+
也是一种度量标准。
    
=== 条件互信息 Conditional mutual information ===
 
=== 条件互信息 Conditional mutual information ===
463

个编辑

导航菜单