第1,876行: |
第1,876行: |
| There are two principal ways of formulating thermodynamics, (a) through passages from one state of thermodynamic equilibrium to another, and (b) through cyclic processes, by which the system is left unchanged, while the total entropy of the surroundings is increased. These two ways help to understand the processes of life. This topic is mostly beyond the scope of this present article, but has been considered by several authors, such as Erwin Schrödinger, Léon Brillouin and Isaac Asimov. It is also the topic of current research. | | There are two principal ways of formulating thermodynamics, (a) through passages from one state of thermodynamic equilibrium to another, and (b) through cyclic processes, by which the system is left unchanged, while the total entropy of the surroundings is increased. These two ways help to understand the processes of life. This topic is mostly beyond the scope of this present article, but has been considered by several authors, such as Erwin Schrödinger, Léon Brillouin and Isaac Asimov. It is also the topic of current research. |
| | | |
− | 表述热力学主要有两种方式:(a)描述从一种热力学平衡状态到另一种状态的路径,(b)通过使系统保持不变,同时增加周围环境的总熵的循环过程。这两种方法有助于理解生命过程。这个话题大大超出了本文的范围,但是已经有一些研究者考虑过这个问题,比如埃尔温·薛定谔、莱昂·布里渊和艾萨克.阿西莫夫。这也是当前研究的主题。 | + | 表述热力学主要有两种方式:(a)描述从一种热力学平衡状态到另一种状态的路径,(b)通过<font color = 'red'><s>使系统保持不变,同时增加周围环境的总熵</s></font><font color = 'blue'>系统保持不变但周围环境的总熵增加</font>的循环过程。这两种方法有助于理解生命过程。这个话题大大超出了本文的范围,但是已经有一些研究者考虑过这个问题,比如'''<font color = '#ff8000'>薛定谔Erwin Schrödinger</font>'''、'''<font color = '#ff8000'>布里渊Léon Brillouin</font>'''和'''<font color = '#ff8000'>阿西莫夫Isaac Asimov</font>'''。这也是当前研究的主题。 |
| | | |
| | | |
第1,886行: |
第1,886行: |
| To a fair approximation, living organisms may be considered as examples of (b). Approximately, an animal's physical state cycles by the day, leaving the animal nearly unchanged. Animals take in food, water, and oxygen, and, as a result of metabolism, give out breakdown products and heat. Plants take in radiative energy from the sun, which may be regarded as heat, and carbon dioxide and water. They give out oxygen. In this way they grow. Eventually they die, and their remains rot away, turning mostly back into carbon dioxide and water. This can be regarded as a cyclic process. Overall, the sunlight is from a high temperature source, the sun, and its energy is passed to a lower temperature sink, i.e. radiated into space. This is an increase of entropy of the surroundings of the plant. Thus animals and plants obey the second law of thermodynamics, considered in terms of cyclic processes. Simple concepts of efficiency of heat engines are hardly applicable to this problem because they assume closed systems. | | To a fair approximation, living organisms may be considered as examples of (b). Approximately, an animal's physical state cycles by the day, leaving the animal nearly unchanged. Animals take in food, water, and oxygen, and, as a result of metabolism, give out breakdown products and heat. Plants take in radiative energy from the sun, which may be regarded as heat, and carbon dioxide and water. They give out oxygen. In this way they grow. Eventually they die, and their remains rot away, turning mostly back into carbon dioxide and water. This can be regarded as a cyclic process. Overall, the sunlight is from a high temperature source, the sun, and its energy is passed to a lower temperature sink, i.e. radiated into space. This is an increase of entropy of the surroundings of the plant. Thus animals and plants obey the second law of thermodynamics, considered in terms of cyclic processes. Simple concepts of efficiency of heat engines are hardly applicable to this problem because they assume closed systems. |
| | | |
− | 从近似的角度来看,生命体可以被认为是(b)的一个例子。近似地,一只动物的身体状态每天循环,使得它几乎没有什么变化。动物吸收食物、水和氧气,经过'''新陈代谢metabolism''',输出分解的产物和热<s>量</s>。植物吸收来自太阳的辐射能量,这可以认为是热<s>量</s>,以及二氧化碳和水,然后它们释放氧气。它们就是这样生长的,最终会死亡,尸体腐烂,大部分重新变成二氧化碳和水。这可以看作是一个循环过程。总的来说,阳光来自一个高温的源——太阳,它的能量被传递到一个较低的温度汇,例如向太空辐射。这个过程使得植物周围环境的熵增加。因此从循环过程的角度来看,动物和植物服从热力学第二定律。简单的热机效率概念很难适用于这个问题,因为它们假定系统是封闭的。 | + | 从近似的角度来看,生命体可以被认为是(b)的一个例子。近似地,一只动物的身体状态每天循环,使得它几乎没有什么变化。动物吸收食物、水和氧气,经过'''<font color = '#ff8000'>新陈代谢metabolism</font>''',输出分解的产物和热<s>量</s>。植物吸收来自太阳的辐射能量,这可以认为是热<s>量</s>,以及二氧化碳和水,然后它们释放氧气。它们就是这样生长的。<font color = 'blue'>它们</font>最终会死亡,尸体腐烂,大部分重新变成二氧化碳和水。这可以看作是一个循环过程。总的来说,阳光来自一个高温的源——太阳,它的能量被传递到一个较低的温度源,<font color = 'red'><s>例如</s></font><font color = 'blue'>即</font>向太空辐射。这个过程使得植物周围环境的熵增加。因此从循环过程的角度来看,动物和植物服从热力学第二定律。简单的热机效率概念很难适用于这个问题,因为它们假定系统是封闭的。 |
| | | |
| | | |
第1,893行: |
第1,893行: |
| | | |
| From the thermodynamic viewpoint that considers (a), passages from one equilibrium state to another, only a roughly approximate picture appears, because living organisms are never in states of thermodynamic equilibrium. Living organisms must often be considered as open systems, because they take in nutrients and give out waste products. Thermodynamics of open systems is currently often considered in terms of passages from one state of thermodynamic equilibrium to another, or in terms of flows in the approximation of local thermodynamic equilibrium. The problem for living organisms may be further simplified by the approximation of assuming a steady state with unchanging flows. General principles of entropy production for such approximations are subject to [[Non-equilibrium thermodynamics|unsettled current debate or research]]. Nevertheless, ideas derived from this viewpoint on the second law of thermodynamics are enlightening about living creatures. | | From the thermodynamic viewpoint that considers (a), passages from one equilibrium state to another, only a roughly approximate picture appears, because living organisms are never in states of thermodynamic equilibrium. Living organisms must often be considered as open systems, because they take in nutrients and give out waste products. Thermodynamics of open systems is currently often considered in terms of passages from one state of thermodynamic equilibrium to another, or in terms of flows in the approximation of local thermodynamic equilibrium. The problem for living organisms may be further simplified by the approximation of assuming a steady state with unchanging flows. General principles of entropy production for such approximations are subject to [[Non-equilibrium thermodynamics|unsettled current debate or research]]. Nevertheless, ideas derived from this viewpoint on the second law of thermodynamics are enlightening about living creatures. |
− | | + | ==here== |
| From the thermodynamic viewpoint that considers (a), passages from one equilibrium state to another, only a roughly approximate picture appears, because living organisms are never in states of thermodynamic equilibrium. Living organisms must often be considered as open systems, because they take in nutrients and give out waste products. Thermodynamics of open systems is currently often considered in terms of passages from one state of thermodynamic equilibrium to another, or in terms of flows in the approximation of local thermodynamic equilibrium. The problem for living organisms may be further simplified by the approximation of assuming a steady state with unchanging flows. General principles of entropy production for such approximations are subject to unsettled current debate or research. Nevertheless, ideas derived from this viewpoint on the second law of thermodynamics are enlightening about living creatures. | | From the thermodynamic viewpoint that considers (a), passages from one equilibrium state to another, only a roughly approximate picture appears, because living organisms are never in states of thermodynamic equilibrium. Living organisms must often be considered as open systems, because they take in nutrients and give out waste products. Thermodynamics of open systems is currently often considered in terms of passages from one state of thermodynamic equilibrium to another, or in terms of flows in the approximation of local thermodynamic equilibrium. The problem for living organisms may be further simplified by the approximation of assuming a steady state with unchanging flows. General principles of entropy production for such approximations are subject to unsettled current debate or research. Nevertheless, ideas derived from this viewpoint on the second law of thermodynamics are enlightening about living creatures. |
| | | |