第1,184行: |
第1,184行: |
| The first theory of the conversion of heat into mechanical work is due to Nicolas Léonard Sadi Carnot in 1824. He was the first to realize correctly that the efficiency of this conversion depends on the difference of temperature between an engine and its environment. | | The first theory of the conversion of heat into mechanical work is due to Nicolas Léonard Sadi Carnot in 1824. He was the first to realize correctly that the efficiency of this conversion depends on the difference of temperature between an engine and its environment. |
| | | |
− | <font color = 'blue'>卡诺在1824年提出热</font><font color = 'red'><s>首先提出类热</s></font>转化为机械功的<font color = 'blue'>第一个</font>理论。他<font color = 'blue'>是第一个</font>正确认识到了转换效率取决于发动机和环境之间的温差<font color = 'blue'>的人</font>。
| + | 卡诺在1824年提出热转化为机械功的第一个理论。他是第一个正确认识到了转换效率取决于发动机和环境之间的温差的人。 |
| | | |
| | | |
第1,194行: |
第1,194行: |
| Recognizing the significance of James Prescott Joule's work on the conservation of energy, Rudolf Clausius was the first to formulate the second law during 1850, in this form: heat does not flow spontaneously from cold to hot bodies. While common knowledge now, this was contrary to the caloric theory of heat popular at the time, which considered heat as a fluid. From there he was able to infer the principle of Sadi Carnot and the definition of entropy (1865). | | Recognizing the significance of James Prescott Joule's work on the conservation of energy, Rudolf Clausius was the first to formulate the second law during 1850, in this form: heat does not flow spontaneously from cold to hot bodies. While common knowledge now, this was contrary to the caloric theory of heat popular at the time, which considered heat as a fluid. From there he was able to infer the principle of Sadi Carnot and the definition of entropy (1865). |
| | | |
− | '''<font color="#ff8000">克劳修斯Rudolf Clausius </font>'''认识到'''<font color="#ff8000">焦耳James Prescott Joule</font>'''在能量守恒方面工作的重要性后,在1850年<font color = 'red'><s>第一个提出了第二定律</s></font><font color = 'blue'>提出了第二定律的第一个公式,在这个公式中</font>: 热不会自发地从冷物体流向热物体。虽然<font color = 'red'><s>现在的常识是这样的</s></font><font color = 'blue'>现在这是常识</font>,但是这与当时流行的热理论相反,当时的热理论认为热是一种流体。从这些他推断出了'''<font color="#ff8000"> 萨迪卡诺定律the principle of Sadi Carnot</font>'''和熵的定义(1865年)。 | + | '''<font color="#ff8000">克劳修斯Rudolf Clausius </font>'''认识到'''<font color="#ff8000">焦耳James Prescott Joule</font>'''在能量守恒方面工作的重要性后,在1850年提出了第二定律的第一个公式,在这个公式中: 热不会自发地从冷物体流向热物体。虽然现在这是常识,但是这与当时流行的热理论相反,当时的热理论认为热是一种流体。从这些他推断出了'''<font color="#ff8000"> 萨迪卡诺定律the principle of Sadi Carnot</font>'''和熵的定义(1865年)。 |
| | | |
| | | |
第1,206行: |
第1,206行: |
| | | |
| | | |
− | <font color = 'red'><s>19世纪提出的开尔文-普朗克第二定律(Kelvin-Planck)表示:“任何循环运行的设备都不可能从单个蓄热体接收热<s>量</s>并产生净功。”这被证明相当于克劳修斯的陈述。</s></font><font color = 'blue'>19世纪提出的开尔文-普朗克第二陈述(Kelvin-Planck)表示:“任何循环运行的设备都不可能从单个热源接收热并产生净功。”这被证明与克劳修斯的陈述等价。</font>
| + | 19世纪提出的开尔文-普朗克第二陈述(Kelvin-Planck)表示:“任何循环运行的设备都不可能从单个热源接收热并产生净功。”这被证明与克劳修斯的陈述等价。 |
− | | |
| | | |
| | | |
第1,214行: |
第1,213行: |
| The ergodic hypothesis is also important for the Boltzmann approach. It says that, over long periods of time, the time spent in some region of the phase space of microstates with the same energy is proportional to the volume of this region, i.e. that all accessible microstates are equally probable over a long period of time. Equivalently, it says that time average and average over the statistical ensemble are the same. | | The ergodic hypothesis is also important for the Boltzmann approach. It says that, over long periods of time, the time spent in some region of the phase space of microstates with the same energy is proportional to the volume of this region, i.e. that all accessible microstates are equally probable over a long period of time. Equivalently, it says that time average and average over the statistical ensemble are the same. |
| | | |
− | '''<font color="#ff8000">遍历假设ergodic hypothesis</font>'''对'''<font color="#ff8000">玻尔兹曼方法Boltzmann approach</font>'''也很重要。<font color = 'blue'>遍历假设认为</font>在很长一段时间内,在具有相同能量的微观态相空间的某些区域所花费的时间与这个区域的体积成正比,即在很长一段时间内,所有可访问的微观状态<font color = 'blue'>出现/成立</font>的可能性都是一样的。<font color = 'red'><s>同样的,</s></font><font color = 'blue'>等价于说,</font>它表明时间平均值和统计集合的平均值是相同的。 | + | '''<font color="#ff8000">遍历假设ergodic hypothesis</font>'''对'''<font color="#ff8000">玻尔兹曼方法Boltzmann approach</font>'''也很重要。遍历假设认为在很长一段时间内,在具有相同能量的微观态相空间的某些区域所花费的时间与这个区域的体积成正比,即在很长一段时间内,所有可访问的微观状态出现/成立的可能性都是一样的。等价于说,</font>它表明时间平均值和统计集合的平均值是相同的。 |
| | | |
| --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 觉得加上出现/成立好一点? | | --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 觉得加上出现/成立好一点? |
第1,258行: |
第1,257行: |
| where Q is heat, T is temperature and N is the "equivalence-value" of all uncompensated transformations involved in a cyclical process. Later, in 1865, Clausius would come to define "equivalence-value" as entropy. On the heels of this definition, that same year, the most famous version of the second law was read in a presentation at the Philosophical Society of Zurich on April 24, in which, in the end of his presentation, Clausius concludes: | | where Q is heat, T is temperature and N is the "equivalence-value" of all uncompensated transformations involved in a cyclical process. Later, in 1865, Clausius would come to define "equivalence-value" as entropy. On the heels of this definition, that same year, the most famous version of the second law was read in a presentation at the Philosophical Society of Zurich on April 24, in which, in the end of his presentation, Clausius concludes: |
| | | |
− | 其中 Q 是热,T 是温度,N 是一个循环过程中所有<font color = 'red'><s>未补偿</s></font><font color = 'blue'>非补偿</font>的相变的“等价值”。后来在1865年,克劳修斯将“等价值”定义为熵。<font color = 'red'><s>也就是在</s></font><font color = 'blue'>基于这个理论,</font>同一年,第二定律最著名的版本在4月24日苏黎世哲学学会的一次演讲中被<font color = 'red'><s>宣读</s></font><font color = 'blue'>提出</font>,在演讲的最后克劳修斯总结道: | + | 其中 Q 是热,T 是温度,N 是一个循环过程中所有非补偿的相变的“等价值”。后来在1865年,克劳修斯将“等价值”定义为熵。基于这个理论,同一年,第二定律最著名的版本在4月24日苏黎世哲学学会的一次演讲中被提出,在演讲的最后克劳修斯总结道: |
| | | |
| | | |
第1,277行: |
第1,276行: |
| This statement is the best-known phrasing of the second law. Because of the looseness of its language, e.g. universe, as well as lack of specific conditions, e.g. open, closed, or isolated, many people take this simple statement to mean that the second law of thermodynamics applies virtually to every subject imaginable. This is not true; this statement is only a simplified version of a more extended and precise description. | | This statement is the best-known phrasing of the second law. Because of the looseness of its language, e.g. universe, as well as lack of specific conditions, e.g. open, closed, or isolated, many people take this simple statement to mean that the second law of thermodynamics applies virtually to every subject imaginable. This is not true; this statement is only a simplified version of a more extended and precise description. |
| | | |
− | 这句话是第二定律最著名的<font color = 'red'><s>措辞</s></font><font color = 'blue'>陈述</font>。由于其语言松散<font color = 'blue'>模糊</font>,如“宇宙universe”,<font color = 'red'><s>与缺乏具体的条件相同</s></font><font color = 'blue'>和缺乏具体的条件</font>,如“开放open”,“封闭closed”,或“孤立isolated”,许多人认为这一简单的陈述意味着热力学第二定律几乎适用于每一个可以想象的<font color = 'red'><s>学科</s></font><font color = 'blue'>主题</font>。这不是真的;这句话只是一个更广泛和更精确的描述的简化版本。
| + | 这句话是第二定律最著名的陈述。由于其语言松散模糊,如“宇宙universe”,和缺乏具体的条件,如“开放open”,“封闭closed”,或“孤立isolated”,许多人认为这一简单的陈述意味着热力学第二定律几乎适用于每一个可以想象的主题。这不是真的;这句话只是一个更广泛和更精确的描述的简化版本。 |
| | | |
| | | |
第1,347行: |
第1,346行: |
| with <math> \dot S_{i}</math> the sum of the rate of entropy production by all processes inside the system. The advantage of this formulation is that it shows the effect of the entropy production. The rate of entropy production is a very important concept since it determines (limits) the efficiency of thermal machines. Multiplied with ambient temperature <math>T_{a}</math> it gives the so-called dissipated energy <math> P_{diss}=T_{a}\dot S_{i}</math>. | | with <math> \dot S_{i}</math> the sum of the rate of entropy production by all processes inside the system. The advantage of this formulation is that it shows the effect of the entropy production. The rate of entropy production is a very important concept since it determines (limits) the efficiency of thermal machines. Multiplied with ambient temperature <math>T_{a}</math> it gives the so-called dissipated energy <math> P_{diss}=T_{a}\dot S_{i}</math>. |
| | | |
− | 用<math> \dot S_{i}</math>表示系统内所有进程<font color = 'red'><s>产生熵</s></font>'''<font color = '#ff8000'>熵产生Entropy Production</font>'''的速率之和。这个公式的优点是它显示了熵产生的<font color = 'red'><s>影响</s></font>'''<font color = 'blue'>效果</font>。熵产生率是一个非常重要的概念,因为它决定(或限制)热机的效率。乘以环境温度<math>T_{a}</math>,<font color = 'red'><s>得到</s></font>'''<font color = 'blue'>它给出</font>所谓的耗散能<math> P_{diss}=T_{a}\dot S_{i}</math>。 | + | 用<math> \dot S_{i}</math>表示系统内所有进程'''<font color = '#ff8000'>熵产生Entropy Production</font>'''的速率之和。这个公式的优点是它显示了熵产生的效果。熵产生率是一个非常重要的概念,因为它决定(或限制)热机的效率。乘以环境温度<math>T_{a}</math>,它给出所谓的耗散能<math> P_{diss}=T_{a}\dot S_{i}</math>。 |
| | | |
| | | |
第1,395行: |
第1,394行: |
| The equality sign holds in the case that only reversible processes take place inside the system. If irreversible processes take place (which is the case in real systems in operation) the >-sign holds. If heat is supplied to the system at several places we have to take the algebraic sum of the corresponding terms. | | The equality sign holds in the case that only reversible processes take place inside the system. If irreversible processes take place (which is the case in real systems in operation) the >-sign holds. If heat is supplied to the system at several places we have to take the algebraic sum of the corresponding terms. |
| | | |
− | <font color = 'red'><s>等式符号在只有可逆过程在系统内发生的情况下成立。</s></font><font color = 'blue'>只有在系统内发生可逆过程的情况下等号才成立</font>如果发生不可逆过程<font color = 'red'><s>(</s></font><font color = 'blue'>(</font>在实际操作系统中就是这种情况),<font color = 'red'><s>符号保持不变</s></font><font color = 'blue'>则“>”成立</font>。如果系统有多处供热,必须求相应项的代数和。
| + | 只有在系统内发生可逆过程的情况下等号才成立</font>如果发生不可逆过程(在实际操作系统中就是这种情况),则“>”成立。如果系统有多处供热,必须求相应项的代数和。 |
| | | |
| --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 因为是中文环境所以统一用中文标点 | | --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 因为是中文环境所以统一用中文标点 |