第235行: |
第235行: |
| | | |
| == Conditional random graphs == | | == Conditional random graphs == |
| + | 条件随机图<br> |
| | | |
| | | |
第242行: |
第243行: |
| Consider a given random graph model defined on the probability space <math>(\Omega, \mathcal{F}, P)</math> and let <math>\mathcal{P}(G) : \Omega \rightarrow R^{m}</math> be a real valued function which assigns to each graph in <math>\Omega</math> a vector of m properties. | | Consider a given random graph model defined on the probability space <math>(\Omega, \mathcal{F}, P)</math> and let <math>\mathcal{P}(G) : \Omega \rightarrow R^{m}</math> be a real valued function which assigns to each graph in <math>\Omega</math> a vector of m properties. |
| | | |
− | 考虑一个给定的随机图模型定义在概率空间上(Omega,mathcal { f } ,p) </math > ,并且让 < math > mathcal { p }(g) : Omega tarrow r ^ { m } </math > 是一个真正的值函数,它在 < math > Omega </math > 中为每个图赋值一个 m 属性的向量。 | + | 考虑一个给定的随机图模型定义在概率空间上<math>(\Omega,\mathcal{F},P)</math> ,并且让 <math>\mathcal{P}(G):\Omega\tarrow R^{m}</math> 是一个真正的值函数,它在 <math>\Omega</math> 中为每个图赋值一个 ''m'' 属性的向量。 |
| | | |
| For a fixed <math>\mathbf{p} \in R^{m}</math>, ''conditional random graphs'' are models in which the probability measure <math>P</math> assigns zero probability to all graphs such that '<math>\mathcal{P}(G) \neq \mathbf{p} </math>. | | For a fixed <math>\mathbf{p} \in R^{m}</math>, ''conditional random graphs'' are models in which the probability measure <math>P</math> assigns zero probability to all graphs such that '<math>\mathcal{P}(G) \neq \mathbf{p} </math>. |
第248行: |
第249行: |
| For a fixed <math>\mathbf{p} \in R^{m}</math>, conditional random graphs are models in which the probability measure <math>P</math> assigns zero probability to all graphs such that '<math>\mathcal{P}(G) \neq \mathbf{p} </math>. | | For a fixed <math>\mathbf{p} \in R^{m}</math>, conditional random graphs are models in which the probability measure <math>P</math> assigns zero probability to all graphs such that '<math>\mathcal{P}(G) \neq \mathbf{p} </math>. |
| | | |
− | 对于 r ^ { m } </math > 中的一个固定的 < math > mathbf { p } ,条件随机图是这样的模型,在这个模型中,机率量测 < math > p </math > 给所有图分配零概率,例如“ < math > mathcal { p }(g) neq mathbf { p } </math > 。 | + | 对于 <math>R^{m}</math> 中的一个固定的 <math>\mathbf{p}</math> ,条件随机图是这样的模型,在这个模型中,机率量测 <math>p</math> 给所有图分配零概率,例如“ <math>\mathcal{P}(G)\neq\mathbf{p}</math> 。 |
| | | |
| | | |
第256行: |
第257行: |
| Special cases are conditionally uniform random graphs, where <math>P</math> assigns equal probability to all the graphs having specified properties. They can be seen as a generalization of the Erdős–Rényi model G(n,M), when the conditioning information is not necessarily the number of edges M, but whatever other arbitrary graph property <math>\mathcal{P}(G)</math>. In this case very few analytical results are available and simulation is required to obtain empirical distributions of average properties. | | Special cases are conditionally uniform random graphs, where <math>P</math> assigns equal probability to all the graphs having specified properties. They can be seen as a generalization of the Erdős–Rényi model G(n,M), when the conditioning information is not necessarily the number of edges M, but whatever other arbitrary graph property <math>\mathcal{P}(G)</math>. In this case very few analytical results are available and simulation is required to obtain empirical distributions of average properties. |
| | | |
− | 特殊情况是条件均匀随机图,其中 < math > p </math > 给所有具有指定性质的图赋予相等的概率。它们可以被看作是 erd s-Rényi 模型 g (n,m)的一个推广,当条件信息不一定是边的个数 m,而是其他任意图性质 < math > mathcal { p }(g) </math > 时。在这种情况下,很少有分析结果可用,需要模拟来获得平均性质的经验分布。
| + | 特殊情况是'''<font color="#FF8000">条件均匀随机图 Conditionally Uniform Graph </font>''',其中 <math>p</math> 给所有具有指定性质的图赋予相等的概率。它们可以被看作是 Erdős–Rényi 模型 ''G''(''n'',''m'')的一个推广,当条件信息不一定是边的个数 ''M'',而是其他任意图性质 <math>\mathcal{P}(G)</math> 时。在这种情况下,很少有分析结果可用,需要模拟来获得平均性质的经验分布。 |
− | | |
− | | |
| | | |
| ==Interdependent graphs== | | ==Interdependent graphs== |