更改

跳到导航 跳到搜索
大小无更改 、 2020年9月25日 (五) 19:26
第74行: 第74行:  
Now, for a vertex <math>i</math> with <math>d_i \ge 2</math>, the clustering coefficient <math>c(i)</math> of vertex <math>i</math> is the fraction of triples for vertex <math>i</math> that are closed, and can be measured as <math>\frac{\delta (i)}{\tau (i)}</math>. Thus, the clustering coefficient <math>C(G)</math> of graph <math>G</math> is given by <math>C(G) = \frac {1}{N_2} \sum_{i \in V, d_i \ge 2} c(i)</math>, where <math>N_2</math> is the number of nodes with degree at least 2.
 
Now, for a vertex <math>i</math> with <math>d_i \ge 2</math>, the clustering coefficient <math>c(i)</math> of vertex <math>i</math> is the fraction of triples for vertex <math>i</math> that are closed, and can be measured as <math>\frac{\delta (i)}{\tau (i)}</math>. Thus, the clustering coefficient <math>C(G)</math> of graph <math>G</math> is given by <math>C(G) = \frac {1}{N_2} \sum_{i \in V, d_i \ge 2} c(i)</math>, where <math>N_2</math> is the number of nodes with degree at least 2.
   −
现在,对于具有<math>d_i\ge 2</math>的顶点<math>i</ math>,顶点<math>i</math>的聚类系数<math>c(i)</math> 是封闭的顶点<math>i</math>的三元组分数,可以测量为<math>\frac{\delta(i)}{\tau(i)}</math>。 因此,图<math> G </math>的聚类系数<math> C(G)</math>由<math> C(G)=\frac {1}{N_2} \sum_{i \in V,d_i \ge 2}c(i)</math>,其中<math>N_2</math>是度数至少为2的节点数。
+
现在,对于具有<math>d_i \ge 2</math>的顶点<math>i</math>,顶点<math>i</math>的聚类系数<math>c(i)</math> 是封闭的顶点<math>i</math>的三元组分数,可以测量为<math>\frac{\delta(i)}{\tau(i)}</math>。 因此,图<math> G </math>的聚类系数<math> C(G)</math>由<math> C(G)=\frac {1}{N_2} \sum_{i \in V,d_i \ge 2}c(i)</math>,其中<math>N_2</math>是度数至少为2的节点数。
    
==Transitivity==
 
==Transitivity==
274

个编辑

导航菜单