第167行: |
第167行: |
| This implies<ref name="Embrechts">{{cite book |author1=Embrechts P. |author2=Klueppelberg C. |author3=Mikosch T. |title=Modelling extremal events for insurance and finance |publisher=Springer | series = Stochastic Modelling and Applied Probability|location=Berlin |year=1997 | volume=33| doi = 10.1007/978-3-642-33483-2|isbn=978-3-642-08242-9 }}</ref> that, for any <math>n \geq 1</math>, | | This implies<ref name="Embrechts">{{cite book |author1=Embrechts P. |author2=Klueppelberg C. |author3=Mikosch T. |title=Modelling extremal events for insurance and finance |publisher=Springer | series = Stochastic Modelling and Applied Probability|location=Berlin |year=1997 | volume=33| doi = 10.1007/978-3-642-33483-2|isbn=978-3-642-08242-9 }}</ref> that, for any <math>n \geq 1</math>, |
| | | |
− | 这蕴含着,对于任何<math>n \geq 1</math>,
| + | 这意味着,对于任何<math>n \geq 1</math>, |
| | | |
| | | |
第181行: |
第181行: |
| | | |
| This is often known as the principle of the single big jump<ref>{{Cite journal | last1 = Foss | first1 = S. | last2 = Konstantopoulos | first2 = T. | last3 = Zachary | first3 = S. | doi = 10.1007/s10959-007-0081-2 | title = Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments | journal = Journal of Theoretical Probability| volume = 20 | issue = 3 | pages = 581 | year = 2007 | arxiv = math/0509605| pmid = | url = http://www.math.nsc.ru/LBRT/v1/foss/fkz_revised.pdf| pmc = | citeseerx = 10.1.1.210.1699 }}</ref> or catastrophe principle.<ref>{{cite web| url = http://rigorandrelevance.wordpress.com/2014/01/09/catastrophes-conspiracies-and-subexponential-distributions-part-iii/ | title = Catastrophes, Conspiracies, and Subexponential Distributions (Part III) | first = Adam | last = Wierman | authorlink = Adam Wierman | date = January 9, 2014 | accessdate = January 9, 2014 | website = Rigor + Relevance blog | publisher = RSRG, Caltech}}</ref> | | This is often known as the principle of the single big jump<ref>{{Cite journal | last1 = Foss | first1 = S. | last2 = Konstantopoulos | first2 = T. | last3 = Zachary | first3 = S. | doi = 10.1007/s10959-007-0081-2 | title = Discrete and Continuous Time Modulated Random Walks with Heavy-Tailed Increments | journal = Journal of Theoretical Probability| volume = 20 | issue = 3 | pages = 581 | year = 2007 | arxiv = math/0509605| pmid = | url = http://www.math.nsc.ru/LBRT/v1/foss/fkz_revised.pdf| pmc = | citeseerx = 10.1.1.210.1699 }}</ref> or catastrophe principle.<ref>{{cite web| url = http://rigorandrelevance.wordpress.com/2014/01/09/catastrophes-conspiracies-and-subexponential-distributions-part-iii/ | title = Catastrophes, Conspiracies, and Subexponential Distributions (Part III) | first = Adam | last = Wierman | authorlink = Adam Wierman | date = January 9, 2014 | accessdate = January 9, 2014 | website = Rigor + Relevance blog | publisher = RSRG, Caltech}}</ref> |
| + | |
| + | 这通常被称为单跳或巨灾原理。 |
| + | |
| + | |
| | | |
| A distribution <math>F</math> on the whole real line is subexponential if the distribution | | A distribution <math>F</math> on the whole real line is subexponential if the distribution |
| <math>F I([0,\infty))</math> is.<ref>{{cite journal | last = Willekens | first = E. | title = Subexponentiality on the real line | journal = Technical Report | publisher = K.U. Leuven | year = 1986}}</ref> Here <math>I([0,\infty))</math> is the [[indicator function]] of the positive half-line. Alternatively, a random variable <math>X</math> supported on the real line is subexponential if and only if <math>X^+ = \max(0,X)</math> is subexponential. | | <math>F I([0,\infty))</math> is.<ref>{{cite journal | last = Willekens | first = E. | title = Subexponentiality on the real line | journal = Technical Report | publisher = K.U. Leuven | year = 1986}}</ref> Here <math>I([0,\infty))</math> is the [[indicator function]] of the positive half-line. Alternatively, a random variable <math>X</math> supported on the real line is subexponential if and only if <math>X^+ = \max(0,X)</math> is subexponential. |
| + | |
| + | 如果分布<math>F I([0,\infty))</math>为实数,则整个实线上的分布<math>F</math>是次指数的。此时<math>I([0,\infty))</math>是正半线的指标函数。 又或者,当且仅当<math>X^+ = \max(0,X)</math>是次指数时,实线上支持的随机变量<math>X</math>才是次指数。 |
| + | |
| + | |
| | | |
| All subexponential distributions are long-tailed, but examples can be constructed of long-tailed distributions that are not subexponential. | | All subexponential distributions are long-tailed, but examples can be constructed of long-tailed distributions that are not subexponential. |
| + | |
| + | 所有次指数分布都是长尾分布,但可以构造非次指数分布的长尾分布示例。 |
| | | |
| ==Common heavy-tailed distributions== | | ==Common heavy-tailed distributions== |