更改

跳到导航 跳到搜索
添加40字节 、 2020年12月7日 (一) 10:37
无编辑摘要
第194行: 第194行:       −
==Functions with discontinuities==
+
==Functions with discontinuities==非连续性函数
    
Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative {{mvar|x}} and convex for positive {{mvar|x}}, but it has no points of inflection because 0 is not in the domain of the function.
 
Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative {{mvar|x}} and convex for positive {{mvar|x}}, but it has no points of inflection because 0 is not in the domain of the function.
第200行: 第200行:  
Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative  and convex for positive , but it has no points of inflection because 0 is not in the domain of the function.
 
Some functions change concavity without having points of inflection. Instead, they can change concavity around vertical asymptotes or discontinuities. For example, the function <math>x\mapsto \frac1x</math> is concave for negative  and convex for positive , but it has no points of inflection because 0 is not in the domain of the function.
   −
有些函数在没有拐点的情况下改变凹度。相反,它们可以改变垂直渐近线或不连续性周围的凹度。例如,函数 < math > x mapsto frac1x </math > 是凹的表示负的,凸的表示正的,但是它没有拐点,因为0不在函数的域中。
+
有些函数在没有拐点的情况下也可改变凹度。他们可以通过改变垂直渐近线或非连续性来实现。例如,函数 < math > x mapsto frac1x </math > 在x为负的时候显凹性,在x为正的时候显凸性。但这个函数不具有拐点,因为0不在其定义域内。
 
       
11

个编辑

导航菜单