更改

跳到导航 跳到搜索
添加207字节 、 2020年12月7日 (一) 11:34
无编辑摘要
第108行: 第108行:  
If the second derivative, (x)}} exists at , and  is an inflection point for , then (x<sub>0</sub>)  0}}, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection, but an undulation point. However, in algebraic geometry, both inflection points and undulation points are usually called inflection points. An example of an undulation point is  0}} for the function  given by  x<sup>4</sup>}}.
 
If the second derivative, (x)}} exists at , and  is an inflection point for , then (x<sub>0</sub>)  0}}, but this condition is not sufficient for having a point of inflection, even if derivatives of any order exist. In this case, one also needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection, but an undulation point. However, in algebraic geometry, both inflection points and undulation points are usually called inflection points. An example of an undulation point is  0}} for the function  given by  x<sup>4</sup>}}.
   −
如果二阶导数,(x)}}存在于,并且是拐点,那么(x < sub > 0 </sub >)0} ,但是这个条件对于有拐点是不充分的,即使存在任意阶的导数。在这种情况下,还需要最低阶(第二阶以上)非零导数为奇数阶(第三阶、第五阶等)。如果最低阶非零导数为偶数阶,则该点不是拐点,而是波动点。然而,在代数几何中,拐点和起伏点通常都被称为拐点。对于 x < sup > 4 </sup > }给出的函数,波动点的一个例子是0}}。
+
如果二阶导数,(x)}}在x0处存在,并且x0是该函数的拐点,那么(x < sub > 0 </sub >)0} ,那么即使存在任意阶的导数,这个条件对于有拐点也是不充分的。在这种情况下,还需要最低阶(第二阶以上)非零导数为奇数阶(第三阶、第五阶等)。若最低阶非零导数为偶数阶,则该点不是拐点,而是波动点。然而,在代数几何中,拐点和起伏点被统称为拐点。对于给定的 x < sup > 4 </sup > }的函数,波动点是0}}。
      第138行: 第138行:  
If  is  times continuously differentiable in a certain neighborhood of a point  with  odd and , while &nbsp;0}} for  2,&nbsp;&hellip;,&nbsp;k&nbsp;−&nbsp;1}} and  then  has a point of inflection at .
 
If  is  times continuously differentiable in a certain neighborhood of a point  with  odd and , while &nbsp;0}} for  2,&nbsp;&hellip;,&nbsp;k&nbsp;−&nbsp;1}} and  then  has a point of inflection at .
   −
如果在一个奇数点和,而0}为2,& hellip; ,k-1}的点的某个邻域内是时间连续可微的,那么在。
+
如果在一个奇数点和,而0}为2,& hellip; ,k-1}的点的某个邻域内是时间连续可微的,那么在该处有一个拐点。
      第146行: 第146行:  
2) Another sufficient existence condition requires (x + ε)}} and (x&nbsp;−&nbsp;ε)}} to have opposite signs in the neighborhood of&nbsp;x (Bronshtein and Semendyayev 2004, p.&nbsp;231).
 
2) Another sufficient existence condition requires (x + ε)}} and (x&nbsp;−&nbsp;ε)}} to have opposite signs in the neighborhood of&nbsp;x (Bronshtein and Semendyayev 2004, p.&nbsp;231).
   −
2)另一个充分存在条件要求(x + ε)}和(x-ε)}}在 x (Bronshtein 和 Semendyayev,2004,p. 231)附近有相反的符号。
+
2)另一个充分存在条件则要求(x + ε)}和(x-ε)}}在 x (Bronshtein 和 Semendyayev,2004,p. 231)附近具有相反的符号。
      第207行: 第207行:  
== See also ==
 
== See also ==
   −
* [[Critical point (mathematics)]]
+
* [[Critical point (mathematics)]]临界点
   −
* [[Ecological threshold]]
+
* [[Ecological threshold]]生态阈值
   −
* [[Hesse configuration]] formed by the nine inflection points of an [[elliptic curve]]
+
* [[Hesse configuration]] formed by the nine inflection points of an [[elliptic curve]]海塞配置  被椭圆曲线上九个拐点所组成
   −
* [[Ogee]], an architectural form with an inflection point
+
* [[Ogee]], an architectural form with an inflection point S形曲线,具有一个拐点的建筑型式曲线
   −
* [[Vertex (curve)]], a local minimum or maximum of curvature
+
* [[Vertex (curve)]], a local minimum or maximum of curvature顶点,曲线的局部最小或局部最大值点
     
11

个编辑

导航菜单