更改

跳到导航 跳到搜索
删除1,013字节 、 2020年12月8日 (二) 13:59
第544行: 第544行:  
<math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math>
 
<math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math>
   −
< math > eta _ (i,j)} = tfrac {1}{ z } * Vc _ (i,j)} </math >
      
The following are the steps involved in edge detection using ACO:<ref>{{cite book|last1=Tian|first1=Jing|title=2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)|pages=751–756|last2=Yu|first2=Weiyu|last3=Xie|first3=Shengli|doi=10.1109/CEC.2008.4630880|year=2008|isbn=978-1-4244-1822-0|s2cid=1782195}}</ref><ref>{{cite web|last1=Gupta|first1=Charu|last2=Gupta|first2=Sunanda|title=Edge Detection of an Image based on Ant ColonyOptimization Technique|url=https://www.academia.edu/4688002}}</ref><ref>{{Cite book|title = Edge detection using ant colony search algorithm and multiscale contrast enhancement|journal = IEEE International Conference on Systems, Man and Cybernetics, 2009. SMC 2009|pages = 2193–2198|doi = 10.1109/ICSMC.2009.5345922|first1 = A.|last1 = Jevtić|first2 = J.|last2 = Quintanilla-Dominguez|first3 = M.G.|last3 = Cortina-Januchs|first4 = D.|last4 = Andina|year = 2009|isbn = 978-1-4244-2793-2|s2cid = 11654036}}</ref>
 
The following are the steps involved in edge detection using ACO:<ref>{{cite book|last1=Tian|first1=Jing|title=2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)|pages=751–756|last2=Yu|first2=Weiyu|last3=Xie|first3=Shengli|doi=10.1109/CEC.2008.4630880|year=2008|isbn=978-1-4244-1822-0|s2cid=1782195}}</ref><ref>{{cite web|last1=Gupta|first1=Charu|last2=Gupta|first2=Sunanda|title=Edge Detection of an Image based on Ant ColonyOptimization Technique|url=https://www.academia.edu/4688002}}</ref><ref>{{Cite book|title = Edge detection using ant colony search algorithm and multiscale contrast enhancement|journal = IEEE International Conference on Systems, Man and Cybernetics, 2009. SMC 2009|pages = 2193–2198|doi = 10.1109/ICSMC.2009.5345922|first1 = A.|last1 = Jevtić|first2 = J.|last2 = Quintanilla-Dominguez|first3 = M.G.|last3 = Cortina-Januchs|first4 = D.|last4 = Andina|year = 2009|isbn = 978-1-4244-2793-2|s2cid = 11654036}}</ref>
第557行: 第556行:     
<math>Z =\sum_{i=1:M_1}  \sum_{j=1:M_2} Vc(I_{i,j})</math>, which is a normalization factor
 
<math>Z =\sum_{i=1:M_1}  \sum_{j=1:M_2} Vc(I_{i,j})</math>, which is a normalization factor
 
+
是一个归一化因子
[ math ] z = sum { i = 1: m _ 1} sum { j = 1: m _ 2} Vc (i _ { i,j }) </math > ,是一个归一化因子
        第565行: 第563行:     
<math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\
 
<math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\
  −
< math > begin { align } Vc (i _ { i,j }) = & f left (left vert i _ {(i-2,j-1)}-i _ {(i + 2,j + 1)}右垂直 + 左垂直 i _ {(i-2,j + 1)}-i _ (i + 2,j-1)}右垂直。\\
      
the local statistics at the pixel position (i,j).
 
the local statistics at the pixel position (i,j).
    
& +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\
 
& +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\
  −
& +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\
  −
  −
  −
  −
& +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\
      
& +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\
 
& +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\
第583行: 第573行:     
& + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math>
 
& + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math>
  −
左边。(i-1,j + 2)}-i _ {(i-1,j-2)}右 vert + 左 vert i _ {(i,j-1)}-i _ {(i,j + 1)}右 vert 右 vert { align } </math >
        第603行: 第591行:     
\sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{;  (3)} \\
 
\sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{;  (3)} \\
  −
Sin (frac { pi x }{2 lambda }) ,& text { for 0≤ x ≤} lambda text { ; (3)}
  −
   
<math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\
 
<math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\
    
0, & \text{else}
 
0, & \text{else}
  −
0,& text { else }
      
& +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\
 
& +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\
    
\end{cases}</math><br /><math>f(x) =
 
\end{cases}</math><br /><math>f(x) =
  −
结束{ cases } </math > < br/> < math > f (x) =
      
& +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\
 
& +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\
    
\begin{cases}
 
\begin{cases}
  −
开始{ cases }
      
& + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math>
 
& + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math>
第628行: 第607行:  
\pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{;  (4)} \\
 
\pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{;  (4)} \\
   −
\pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{;  (4)} \\
         
0, & \text{else}
 
0, & \text{else}
  −
0,& text { else }
      
<math>f(\cdot)</math> can be calculated using the following functions:<br /><math>f(x) = \lambda x, \quad \text{for x ≥ 0;  (1)} </math><br /><math>f(x) = \lambda x^2, \quad \text{for x ≥ 0;  (2)} </math><br /><math>f(x) =
 
<math>f(\cdot)</math> can be calculated using the following functions:<br /><math>f(x) = \lambda x, \quad \text{for x ≥ 0;  (1)} </math><br /><math>f(x) = \lambda x^2, \quad \text{for x ≥ 0;  (2)} </math><br /><math>f(x) =
第644行: 第620行:     
\tau_{new} \leftarrow
 
\tau_{new} \leftarrow
      
\sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{;  (3)} \\
 
\sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{;  (3)} \\
    
(1-\psi)\tau_{old} + \psi \tau_{0}
 
(1-\psi)\tau_{old} + \psi \tau_{0}
  −
(1-psi) tau _ { old } + psi tau _ {0}
      
0, & \text{else}
 
0, & \text{else}
第699行: 第672行:     
* '''Edge linking:'''<ref>{{cite book|last1 = Jevtić|first1 = A.|title = 2009 35th Annual Conference of IEEE Industrial Electronics|last2 = Melgar|first2 = I.|last3 = Andina|first3 = D.|pages = 3353–3358|year = 2009|location = 35th Annual Conference of IEEE Industrial Electronics, 2009. IECON '09.|doi = 10.1109/IECON.2009.5415195|isbn = 978-1-4244-4648-3|s2cid = 34664559}}</ref> ACO has also been proven effective in edge linking algorithms too.
 
* '''Edge linking:'''<ref>{{cite book|last1 = Jevtić|first1 = A.|title = 2009 35th Annual Conference of IEEE Industrial Electronics|last2 = Melgar|first2 = I.|last3 = Andina|first3 = D.|pages = 3353–3358|year = 2009|location = 35th Annual Conference of IEEE Industrial Electronics, 2009. IECON '09.|doi = 10.1109/IECON.2009.5415195|isbn = 978-1-4244-4648-3|s2cid = 34664559}}</ref> ACO has also been proven effective in edge linking algorithms too.
  −
      
=== Other applications ===
 
=== Other applications ===
7,129

个编辑

导航菜单