第544行: |
第544行: |
| <math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math> | | <math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math> |
| | | |
− | < math > eta _ (i,j)} = tfrac {1}{ z } * Vc _ (i,j)} </math >
| |
| | | |
| The following are the steps involved in edge detection using ACO:<ref>{{cite book|last1=Tian|first1=Jing|title=2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)|pages=751–756|last2=Yu|first2=Weiyu|last3=Xie|first3=Shengli|doi=10.1109/CEC.2008.4630880|year=2008|isbn=978-1-4244-1822-0|s2cid=1782195}}</ref><ref>{{cite web|last1=Gupta|first1=Charu|last2=Gupta|first2=Sunanda|title=Edge Detection of an Image based on Ant ColonyOptimization Technique|url=https://www.academia.edu/4688002}}</ref><ref>{{Cite book|title = Edge detection using ant colony search algorithm and multiscale contrast enhancement|journal = IEEE International Conference on Systems, Man and Cybernetics, 2009. SMC 2009|pages = 2193–2198|doi = 10.1109/ICSMC.2009.5345922|first1 = A.|last1 = Jevtić|first2 = J.|last2 = Quintanilla-Dominguez|first3 = M.G.|last3 = Cortina-Januchs|first4 = D.|last4 = Andina|year = 2009|isbn = 978-1-4244-2793-2|s2cid = 11654036}}</ref> | | The following are the steps involved in edge detection using ACO:<ref>{{cite book|last1=Tian|first1=Jing|title=2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)|pages=751–756|last2=Yu|first2=Weiyu|last3=Xie|first3=Shengli|doi=10.1109/CEC.2008.4630880|year=2008|isbn=978-1-4244-1822-0|s2cid=1782195}}</ref><ref>{{cite web|last1=Gupta|first1=Charu|last2=Gupta|first2=Sunanda|title=Edge Detection of an Image based on Ant ColonyOptimization Technique|url=https://www.academia.edu/4688002}}</ref><ref>{{Cite book|title = Edge detection using ant colony search algorithm and multiscale contrast enhancement|journal = IEEE International Conference on Systems, Man and Cybernetics, 2009. SMC 2009|pages = 2193–2198|doi = 10.1109/ICSMC.2009.5345922|first1 = A.|last1 = Jevtić|first2 = J.|last2 = Quintanilla-Dominguez|first3 = M.G.|last3 = Cortina-Januchs|first4 = D.|last4 = Andina|year = 2009|isbn = 978-1-4244-2793-2|s2cid = 11654036}}</ref> |
第557行: |
第556行: |
| | | |
| <math>Z =\sum_{i=1:M_1} \sum_{j=1:M_2} Vc(I_{i,j})</math>, which is a normalization factor | | <math>Z =\sum_{i=1:M_1} \sum_{j=1:M_2} Vc(I_{i,j})</math>, which is a normalization factor |
− | | + | 是一个归一化因子 |
− | [ math ] z = sum { i = 1: m _ 1} sum { j = 1: m _ 2} Vc (i _ { i,j }) </math > ,是一个归一化因子
| |
| | | |
| | | |
第565行: |
第563行: |
| | | |
| <math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\ | | <math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\ |
− |
| |
− | < math > begin { align } Vc (i _ { i,j }) = & f left (left vert i _ {(i-2,j-1)}-i _ {(i + 2,j + 1)}右垂直 + 左垂直 i _ {(i-2,j + 1)}-i _ (i + 2,j-1)}右垂直。\\
| |
| | | |
| the local statistics at the pixel position (i,j). | | the local statistics at the pixel position (i,j). |
| | | |
| & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\ | | & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\ |
− |
| |
− | & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\
| |
− |
| |
− |
| |
− |
| |
− | & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\
| |
| | | |
| & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\ | | & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\ |
第583行: |
第573行: |
| | | |
| & + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math> | | & + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math> |
− |
| |
− | 左边。(i-1,j + 2)}-i _ {(i-1,j-2)}右 vert + 左 vert i _ {(i,j-1)}-i _ {(i,j + 1)}右 vert 右 vert { align } </math >
| |
| | | |
| | | |
第603行: |
第591行: |
| | | |
| \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\ | | \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\ |
− |
| |
− | Sin (frac { pi x }{2 lambda }) ,& text { for 0≤ x ≤} lambda text { ; (3)}
| |
− |
| |
| <math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\ | | <math>\begin{align}Vc(I_{i,j}) = &f \left( \left\vert I_{(i-2,j-1)} - I_{(i+2,j+1)} \right\vert + \left\vert I_{(i-2,j+1)} - I_{(i+2,j-1)} \right\vert \right. \\ |
| | | |
| 0, & \text{else} | | 0, & \text{else} |
− |
| |
− | 0,& text { else }
| |
| | | |
| & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\ | | & +\left\vert I_{(i-1,j-2)} - I_{(i+1,j+2)} \right\vert + \left\vert I_{(i-1,j-1)} - I_{(i+1,j+1)} \right\vert\\ |
| | | |
| \end{cases}</math><br /><math>f(x) = | | \end{cases}</math><br /><math>f(x) = |
− |
| |
− | 结束{ cases } </math > < br/> < math > f (x) =
| |
| | | |
| & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\ | | & +\left\vert I_{(i-1,j)} - I_{(i+1,j)} \right\vert + \left\vert I_{(i-1,j+1)} - I_{(i-1,j-1)} \right\vert\\ |
| | | |
| \begin{cases} | | \begin{cases} |
− |
| |
− | 开始{ cases }
| |
| | | |
| & + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math> | | & + \left. \left\vert I_{(i-1,j+2)} - I_{(i-1,j-2)} \right\vert + \left\vert I_{(i,j-1)} - I_{(i,j+1)} \right\vert \right) \end{align}</math> |
第628行: |
第607行: |
| \pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\ | | \pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\ |
| | | |
− | \pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\
| |
| | | |
| | | |
| 0, & \text{else} | | 0, & \text{else} |
− |
| |
− | 0,& text { else }
| |
| | | |
| <math>f(\cdot)</math> can be calculated using the following functions:<br /><math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br /><math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)} </math><br /><math>f(x) = | | <math>f(\cdot)</math> can be calculated using the following functions:<br /><math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br /><math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)} </math><br /><math>f(x) = |
第644行: |
第620行: |
| | | |
| \tau_{new} \leftarrow | | \tau_{new} \leftarrow |
− |
| |
| | | |
| \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\ | | \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\ |
| | | |
| (1-\psi)\tau_{old} + \psi \tau_{0} | | (1-\psi)\tau_{old} + \psi \tau_{0} |
− |
| |
− | (1-psi) tau _ { old } + psi tau _ {0}
| |
| | | |
| 0, & \text{else} | | 0, & \text{else} |
第699行: |
第672行: |
| | | |
| * '''Edge linking:'''<ref>{{cite book|last1 = Jevtić|first1 = A.|title = 2009 35th Annual Conference of IEEE Industrial Electronics|last2 = Melgar|first2 = I.|last3 = Andina|first3 = D.|pages = 3353–3358|year = 2009|location = 35th Annual Conference of IEEE Industrial Electronics, 2009. IECON '09.|doi = 10.1109/IECON.2009.5415195|isbn = 978-1-4244-4648-3|s2cid = 34664559}}</ref> ACO has also been proven effective in edge linking algorithms too. | | * '''Edge linking:'''<ref>{{cite book|last1 = Jevtić|first1 = A.|title = 2009 35th Annual Conference of IEEE Industrial Electronics|last2 = Melgar|first2 = I.|last3 = Andina|first3 = D.|pages = 3353–3358|year = 2009|location = 35th Annual Conference of IEEE Industrial Electronics, 2009. IECON '09.|doi = 10.1109/IECON.2009.5415195|isbn = 978-1-4244-4648-3|s2cid = 34664559}}</ref> ACO has also been proven effective in edge linking algorithms too. |
− |
| |
− |
| |
| | | |
| === Other applications === | | === Other applications === |