更改

跳到导航 跳到搜索
删除433字节 、 2020年12月22日 (二) 18:19
无编辑摘要
第3行: 第3行:  
In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation.[1] The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists,[1] as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
 
In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation.[1] The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists,[1] as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
   −
在物理学和经典力学领域中,三体问题是根据牛顿运动定律和牛顿万有引力定律按照三点处质量体的初始位置和速度(或动量)求出它们随后的运动的问题。三体是n体问题中的一个特例。与双体问题不同的是,三体问题不存在一般的闭式解,因为产生的动力系统对于大多数初始条件来说是混沌的,所以一般需要数值方法求解。
+
在物理学和经典力学领域中,三体问题是根据牛顿运动定律和牛顿万有引力定律按照三点处质量体的初始位置和速度(或动量)求出它们随后的运动的问题。三体是N体问题中的一个特例。与双体问题不同的是,三体问题不存在一般的闭式解,因为产生的动力系统对于大多数初始条件来说是混沌的,所以一般需要数值方法求解。
 
  −
--[[用户:Vicky|Vicky]]([[用户讨论:Vicky|讨论]])n-body problem 翻译为 “多体问题”或“N体问题”会不会更好一些?
      
Historically, the first specific three-body problem to receive extended study was the one involving the Moon, the Earth, and the Sun.[2] In an extended modern sense, a three-body problem is any problem in classical mechanics or quantum mechanics that models the motion of three particles.
 
Historically, the first specific three-body problem to receive extended study was the one involving the Moon, the Earth, and the Sun.[2] In an extended modern sense, a three-body problem is any problem in classical mechanics or quantum mechanics that models the motion of three particles.
第165行: 第163行:       −
氦原子是经典力学中引力三体问题的量子力学模拟,其中一个氦原子核和两个电子会产生反平方库仑相互作用,这种相互作用称为经典力学中的三体问题。就像重力三体问题一样,氦原子的三体问题没有精确解。
+
氦原子是经典力学中引力三体问题的量子力学模拟,其中一个氦原子核和两个电子会产生反平方库仑相互作用。就像引力三体问题一样,氦原子的三体问题没有精确解。
    
In both classical and quantum mechanics, however, there exist nontrivial interaction laws besides the inverse-square force which do lead to exact analytic three-body solutions. One such model consists of a combination of harmonic attraction and a repulsive inverse-cube force.[24] This model is considered nontrivial since it is associated with a set of nonlinear differential equations containing singularities (compared with, e.g., harmonic interactions alone, which lead to an easily solved system of linear differential equations). In these two respects it is analogous to (insoluble) models having Coulomb interactions, and as a result has been suggested as a tool for intuitively understanding physical systems like the helium atom.[24][25]
 
In both classical and quantum mechanics, however, there exist nontrivial interaction laws besides the inverse-square force which do lead to exact analytic three-body solutions. One such model consists of a combination of harmonic attraction and a repulsive inverse-cube force.[24] This model is considered nontrivial since it is associated with a set of nonlinear differential equations containing singularities (compared with, e.g., harmonic interactions alone, which lead to an easily solved system of linear differential equations). In these two respects it is analogous to (insoluble) models having Coulomb interactions, and as a result has been suggested as a tool for intuitively understanding physical systems like the helium atom.[24][25]
第180行: 第178行:  
The three-body problem is a special case of the n-body problem, which describes how n objects will move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details). However, the Sundman and Wang series converge so slowly that they are useless for practical purposes;[27] therefore, it is currently necessary to approximate solutions by numerical analysis in the form of numerical integration or, for some cases, classical trigonometric series approximations (see n-body simulation). Atomic systems, e.g. atoms, ions, and molecules, can be treated in terms of the quantum n-body problem. Among classical physical systems, the n-body problem usually refers to a galaxy or to a cluster of galaxies; planetary systems, such as stars, planets, and their satellites, can also be treated as n-body systems. Some applications are conveniently treated by perturbation theory, in which the system is considered as a two-body problem plus additional forces causing deviations from a hypothetical unperturbed two-body trajectory.
 
The three-body problem is a special case of the n-body problem, which describes how n objects will move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details). However, the Sundman and Wang series converge so slowly that they are useless for practical purposes;[27] therefore, it is currently necessary to approximate solutions by numerical analysis in the form of numerical integration or, for some cases, classical trigonometric series approximations (see n-body simulation). Atomic systems, e.g. atoms, ions, and molecules, can be treated in terms of the quantum n-body problem. Among classical physical systems, the n-body problem usually refers to a galaxy or to a cluster of galaxies; planetary systems, such as stars, planets, and their satellites, can also be treated as n-body systems. Some applications are conveniently treated by perturbation theory, in which the system is considered as a two-body problem plus additional forces causing deviations from a hypothetical unperturbed two-body trajectory.
   −
三体问题是n体问题的一个特例,它描述了n个物体在其中一种物理力(如重力)下如何运动。这些问题具有收敛幂级数形式的全局解析解,比如,Karl F.Sundman证明n=3的情况,qaudong Wang证明n>3的情况。然而,Sundman级数和Wang级数收敛速度太慢,无法用于实际目的;因此,目前有必要通过数值分析以数值积分的形式来近似解,或者在某些情况下,采用经典三角级数近似。原子系统,例如原子、离子和分子,可以用量子n体问题来处理。在经典物理系统中,n体问题通常是指一个星系或一个星系团;行星系统,如恒星、行星及其卫星,也可以被视为n体系统。一些应用可以方便地用扰动理论来处理,其中系统被认为是一个两体问题加上导致偏离假设的无扰动两体轨道的附加力。
+
三体问题是N体问题的一个特例,它描述了n个物体在其中一种物理力(如重力)下如何运动。这些问题具有收敛幂级数形式的全局解析解,比如,Karl F.Sundman证明n=3的情况,qaudong Wang证明n>3的情况。然而,Sundman级数和Wang级数收敛速度太慢,无法用于实际目的;因此,目前有必要通过数值分析以数值积分的形式来近似解,或者在某些情况下,采用经典三角级数近似。原子系统,例如原子、离子和分子,可以用量子N体问题来处理。在经典物理系统中,N体问题通常是指一个星系或一个星系团;行星系统,如恒星、行星及其卫星,也可以被视为N体系统。一些应用可以方便地用扰动理论来处理,其中系统被认为是一个两体问题加上导致偏离假设的无扰动两体轨道的附加力。
    
==三体小说==
 
==三体小说==
第186行: 第184行:  
The problem is a plot device in the science fiction trilogy by Chinese author Cixin Liu, and its name has been used for both the first volume and the trilogy as a whole
 
The problem is a plot device in the science fiction trilogy by Chinese author Cixin Liu, and its name has been used for both the first volume and the trilogy as a whole
   −
三体问题是中国作家刘慈欣的科幻三部曲中有所提及的模拟游戏,也被用于第一卷和整个三部曲的书名。
+
三体问题被中国作家刘慈欣用于科幻小说三部曲中的情节设计,也被用于作为第一卷和整个三部曲的书名。
 
  −
--[[用户:Vicky|Vicky]]([[用户讨论:Vicky|讨论]])是否翻译为“三体问题被应用于中国作家刘慈欣科幻小说三部曲中的情节设计中,也被用于第一卷和整个三部曲的书名。”更好?
 
19

个编辑

导航菜单