第70行: |
第70行: |
| | | |
| | | |
− | ==Challenges 挑战== | + | ==挑战== |
| | | |
| | | |
− | The principle is widely accepted as [[physical law]], but in recent years it has been challenged for using [[circular reasoning]] and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000)<ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref> and Norton (2004,<ref name="norton">[http://philsci-archive.pitt.edu/archive/00001729/ Eaters of the Lotus] Critique by John Norton (2004)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011)</ref>), and defended by Bennett (2003),<ref name="bennett" /> Ladyman et al. (2007),<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref> and by Jordan and Manikandan (2019).<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>
| + | 这一原理被广泛接受为物理定律,但近年来,它因使用'''<font color="#ff8000"> 循环推理 circular reasoning </font>'''和错误假设而受到挑战,尤其是厄尔曼 Earman和诺顿 Norton (1998年) ,是申克 shenker (2000年) <ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref>和Norton (2004年)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011年)</ref>) ,在这之后,贝内特 bennett (2003年<ref name="bennett" />),约旦 Ladyman(2007年<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref>)和马尼坎达 Manikandan (2019年<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>)为之辩护。 |
| | | |
− | The principle is widely accepted as physical law, but in recent years it has been challenged for using circular reasoning and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000) and Norton (2004, 2011), and defended by Bennett (2003), and by Jordan and Manikandan (2019).
| |
| | | |
− | 这一原理被广泛接受为物理定律,但近年来,它因使用'''<font color="#ff8000"> 循环推理 circular reasoning </font>'''和错误假设而受到挑战,尤其是厄尔曼 Earman和诺顿 Norton (1998年) ,是申克 shenker (2000年) <ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref>和Norton (2004年)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011年)</ref>) ,在这之后,贝内特 bennett (2003年<ref name="bennett" />),约旦 Ladyman(2007年<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref>)和马尼坎达 Manikandan (2019年<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>)为之辩护。
| |
| | | |
| + | 另一方面,非平衡统计物理学的最新进展已经确定,逻辑可逆性和热力学可逆性之间不存在先验关系。<ref name="sagawa">{{Citation |author=Takahiro Sagawa |title= Thermodynamic and logical reversibilities revisited |journal= Journal of Statistical Mechanics: Theory and Experiment |year= 2014 |volume= 2014 |issue= 3 |page= 03025 |doi= 10.1088/1742-5468/2014/03/P03025 |arxiv= 1311.1886 |bibcode= 2014JSMTE..03..025S |s2cid= 119247579 }}</ref>一个物理过程有可能在逻辑上是可逆的,但在热力学上是不可逆的。也有可能一个物理过程在逻辑上是不可逆的,但在热力学上是可逆的。用逻辑上可逆的系统进行计算的好处极其微小。<ref name="wolpert">{{Citation |author=David H. Wolpert |title= Stochastic thermodynamics of computation |journal= Journal of Physics A: Mathematical and Theoretical |year= 2019 |volume= 52 |issue= 19 |page= 193001 |doi= 10.1088/1751-8121/ab0850 |arxiv= 1905.05669 |bibcode= 2019JPhA...52s3001W |s2cid= 126715753 }}</ref> |
| | | |
| | | |
− | On the other hand, recent advances in non-equilibrium statistical physics have established that there is no a priori relationship between logical and thermodynamic reversibility.<ref name="sagawa">{{Citation |author=Takahiro Sagawa |title= Thermodynamic and logical reversibilities revisited |journal= Journal of Statistical Mechanics: Theory and Experiment |year= 2014 |volume= 2014 |issue= 3 |page= 03025 |doi= 10.1088/1742-5468/2014/03/P03025 |arxiv= 1311.1886 |bibcode= 2014JSMTE..03..025S |s2cid= 119247579 }}</ref> It is possible that a physical process is logically reversible but thermodynamically irreversible. It is also possible that a physical process is logically irreversible but thermodynamically reversible. At best, the benefits of implementing a computation with a logically reversible systems are nuanced.<ref name="wolpert">{{Citation |author=David H. Wolpert |title= Stochastic thermodynamics of computation |journal= Journal of Physics A: Mathematical and Theoretical |year= 2019 |volume= 52 |issue= 19 |page= 193001 |doi= 10.1088/1751-8121/ab0850 |arxiv= 1905.05669 |bibcode= 2019JPhA...52s3001W |s2cid= 126715753 }}</ref>
| + | 2016年,佩鲁贾大学 University of Perugia的研究人员声称已经证明违反了兰道尔原理。<ref>{{cite web|url=https://m.phys.org/news/2016-07-refutes-famous-physical.html|title=Computing study refutes famous claim that 'information is physical'|website=m.phys.org}}</ref>然而,根据拉斯洛·基什 Laszlo Kish (2016) ,<ref>{{cite web|author=Laszlo Bela Kish42.27Texas A&M University |url=https://www.researchgate.net/publication/304582612 |title=Comments on "Sub-kBT Micro-Electromechanical Irreversible Logic Gate" |date= |accessdate=2020-03-08}}</ref>他们的结果是无效的,因为他们“忽略了能量耗散的主要来源,即输入电极电容的充电能量”。 |
| | | |
− | On the other hand, recent advances in non-equilibrium statistical physics have established that there is no a priori relationship between logical and thermodynamic reversibility. It is possible that a physical process is logically reversible but thermodynamically irreversible. It is also possible that a physical process is logically irreversible but thermodynamically reversible. At best, the benefits of implementing a computation with a logically reversible systems are nuanced.
| |
| | | |
− | 另一方面,非平衡统计物理学的最新进展已经确定,逻辑可逆性和热力学可逆性之间不存在先验关系。<ref name="sagawa">{{Citation |author=Takahiro Sagawa |title= Thermodynamic and logical reversibilities revisited |journal= Journal of Statistical Mechanics: Theory and Experiment |year= 2014 |volume= 2014 |issue= 3 |page= 03025 |doi= 10.1088/1742-5468/2014/03/P03025 |arxiv= 1311.1886 |bibcode= 2014JSMTE..03..025S |s2cid= 119247579 }}</ref>一个物理过程有可能在逻辑上是可逆的,但在热力学上是不可逆的。也有可能一个物理过程在逻辑上是不可逆的,但在热力学上是可逆的。用逻辑上可逆的系统进行计算的好处极其微小。<ref name="wolpert">{{Citation |author=David H. Wolpert |title= Stochastic thermodynamics of computation |journal= Journal of Physics A: Mathematical and Theoretical |year= 2019 |volume= 52 |issue= 19 |page= 193001 |doi= 10.1088/1751-8121/ab0850 |arxiv= 1905.05669 |bibcode= 2019JPhA...52s3001W |s2cid= 126715753 }}</ref>
| |
| | | |
| + | ==请参阅== |
| | | |
− | In 2016, researchers at the [[University of Perugia]] claimed to have demonstrated a violation of Landauer’s principle.<ref>{{cite web|url=https://m.phys.org/news/2016-07-refutes-famous-physical.html|title=Computing study refutes famous claim that 'information is physical'|website=m.phys.org}}</ref> However, according to Laszlo Kish (2016),<ref>{{cite web|author=Laszlo Bela Kish42.27Texas A&M University |url=https://www.researchgate.net/publication/304582612 |title=Comments on "Sub-kBT Micro-Electromechanical Irreversible Logic Gate" |date= |accessdate=2020-03-08}}</ref> their results are invalid because they "neglect the dominant source of energy dissipation, namely, the charging energy of the capacitance of the input electrode".
| |
| | | |
− | In 2016, researchers at the University of Perugia claimed to have demonstrated a violation of Landauer’s principle. However, according to Laszlo Kish (2016), their results are invalid because they "neglect the dominant source of energy dissipation, namely, the charging energy of the capacitance of the input electrode".
| + | * [Margolus–Levitin theorem https://en.wikipedia.org/wiki/Margolus%E2%80%93Levitin_theorem]玛格罗斯·莱维汀定理 |
| + | * [Bremermann's limit https://en.wikipedia.org/wiki/Bremermann%27s_limit]布雷曼极限 |
| + | * [[Bekenstein bound https://en.wikipedia.org/wiki/Bekenstein_bound]贝肯斯坦约束 |
| + | * [[Kolmogorov complexity]]科尔莫戈罗夫复杂性 |
| | | |
− | 2016年,佩鲁贾大学 University of Perugia的研究人员声称已经证明违反了兰道尔原理。<ref>{{cite web|url=https://m.phys.org/news/2016-07-refutes-famous-physical.html|title=Computing study refutes famous claim that 'information is physical'|website=m.phys.org}}</ref>然而,根据拉斯洛·基什 Laszlo Kish (2016) ,<ref>{{cite web|author=Laszlo Bela Kish42.27Texas A&M University |url=https://www.researchgate.net/publication/304582612 |title=Comments on "Sub-kBT Micro-Electromechanical Irreversible Logic Gate" |date= |accessdate=2020-03-08}}</ref>他们的结果是无效的,因为他们“忽略了能量耗散的主要来源,即输入电极电容的充电能量”。
| |
| | | |
| + | * [[Entropy in thermodynamics and information theory]]热力学和信息理论中的熵 |
| | | |
| | | |
− | ==See also==
| + | * [[信息论]] |
− | 请参阅
| |
| | | |
− | * [[Margolus–Levitin theorem]]
| |
− | 玛格罗斯·莱维汀定理
| |
| | | |
− | * [[Bremermann's limit]] | + | * [[Jarzynski equality]] |
− | 布雷曼极限
| + | 贾任斯基恒等式 |
| + | |
| | | |
− | * [[Bekenstein bound]] | + | * [[计算限制]] |
− | 贝肯斯坦约束
| |
| | | |
− | * [[Kolmogorov complexity]]
| |
− | 科尔莫戈罗夫复杂性
| |
| | | |
− | * [[Entropy in thermodynamics and information theory]] | + | * [[扩展思维理论]] |
− | 热力学和信息理论中的熵
| |
| | | |
− | * [[Information theory]]
| |
− | 信息理论
| |
| | | |
− | * [[Jarzynski equality]] | + | * [[麦克斯韦妖]] |
− | 贾任斯基恒等式
| |
− |
| |
| | | |
− | * [[Limits to computation]]
| |
− | 计算限制
| |
| | | |
− | * [[Extended mind thesis]] | + | *[[库米定律]] |
− | 扩展思维理论
| |
| | | |
− | * [[Maxwell's demon]]
| |
− | 麦克斯韦妖
| |
| | | |
− | *[[Koomey's law|Koomey's Law]]
| |
− | 库米定律
| |
| | | |
| + | ==参考文献== |
| | | |
− | ==References==
| |
− | 参考
| |
| | | |
| {{reflist}} | | {{reflist}} |
第141行: |
第123行: |
| | | |
| | | |
− | ==Further reading== | + | ==进一步阅读== |
− | 进一步阅读
| + | |
| | | |
| *{{citation| author1-first= Mikhail | author1-last= Prokopenko | author2-first=Joseph T. | author2-last= Lizier | title= Transfer entropy and transient limits of computation | journal= [[Scientific Reports]] | date= 2014 | volume=4 | page= 5394 | doi= 10.1038/srep05394| pmid= 24953547 | bibcode= 2014NatSR...4E5394P | pmc= 4066251 }} | | *{{citation| author1-first= Mikhail | author1-last= Prokopenko | author2-first=Joseph T. | author2-last= Lizier | title= Transfer entropy and transient limits of computation | journal= [[Scientific Reports]] | date= 2014 | volume=4 | page= 5394 | doi= 10.1038/srep05394| pmid= 24953547 | bibcode= 2014NatSR...4E5394P | pmc= 4066251 }} |