第11行: |
第11行: |
| <math>f: X \to X,</math> | | <math>f: X \to X,</math> |
| | | |
− | a point ''x'' in ''X'' is called periodic point if there exists an ''n'' so that
| |
| | | |
| <math>X</math>中的点<math>x</math>称为周期点,如果存在一个<math>n</math>使 | | <math>X</math>中的点<math>x</math>称为周期点,如果存在一个<math>n</math>使 |
第17行: |
第16行: |
| <math>\ f_n(x) = x</math> | | <math>\ f_n(x) = x</math> |
| | | |
− | where <math>f_n</math> is the ''n''th [[iterated function|iterate]] of ''f''. The smallest positive [[integer]] ''n'' satisfying the above is called the ''prime period'' or ''least period'' of the point ''x''. If every point in ''X'' is a periodic point with the same period ''n'', then ''f'' is called ''periodic'' with period ''n'' (this is not to be confused with the notion of a [[periodic function]]).
| |
| | | |
| 其中<math>f_n</math>为<math>f</math>的第<math>n</math>次迭代。满足上述条件的最小正整数<math>n</math>称为点<math>x</math>的素数周期prime period或最小周期。如果<math>X</math>中的每一个点都是周期为<math>n</math>的周期点,那么<math>f</math>有周期性,周期为<math>n</math>(这不能和周期函数的概念混淆)。 | | 其中<math>f_n</math>为<math>f</math>的第<math>n</math>次迭代。满足上述条件的最小正整数<math>n</math>称为点<math>x</math>的素数周期prime period或最小周期。如果<math>X</math>中的每一个点都是周期为<math>n</math>的周期点,那么<math>f</math>有周期性,周期为<math>n</math>(这不能和周期函数的概念混淆)。 |
第23行: |
第21行: |
| | | |
| | | |
− | If there exist distinct ''n'' and ''m'' such that <math>f_n(x) = f_m(x)</math>
| |
| | | |
| 如果存在不同的<math>n</math>和<math>m</math>使:<math>f_n(x) = f_m(x)</math> | | 如果存在不同的<math>n</math>和<math>m</math>使:<math>f_n(x) = f_m(x)</math> |
| | | |
− | then ''x'' is called a '''preperiodic point'''. All periodic points are preperiodic.
| |
| | | |
| 那么<math>x</math>称为前周期点。所有周期点都是前周期点。 | | 那么<math>x</math>称为前周期点。所有周期点都是前周期点。 |
| | | |
− | If ''f'' is a [[diffeomorphism]] of a [[differentiable manifold]], so that the [[derivative]] <math>f_n^\prime</math> is defined, then one says that a periodic point is ''hyperbolic'' if
| |
| | | |
| :<math>|f_n^\prime|\ne 1,</math> | | :<math>|f_n^\prime|\ne 1,</math> |
第37行: |
第32行: |
| 如果<math>x</math>是微分流形的微分同胚,则定义了导数<math>f_n^\prime</math>,如果:<math>|f_n^\prime|\ne 1,</math>,那么<math>f</math>是双曲周期点, | | 如果<math>x</math>是微分流形的微分同胚,则定义了导数<math>f_n^\prime</math>,如果:<math>|f_n^\prime|\ne 1,</math>,那么<math>f</math>是双曲周期点, |
| | | |
− | that it is ''[[Attractor|attractive]]'' if :<math>|f_n^\prime|< 1,</math>
| |
| | | |
| 如果:<math>|f_n^\prime|< 1,</math>,则称周期点<math>f</math>为吸引子, | | 如果:<math>|f_n^\prime|< 1,</math>,则称周期点<math>f</math>为吸引子, |
| | | |
− | and it is ''repelling'' if:<math>|f_n^\prime|> 1.</math>
| |
| | | |
| 如果:<math>|f_n^\prime|> 1.</math>,则称周期点<math>f</math>为排斥子。 | | 如果:<math>|f_n^\prime|> 1.</math>,则称周期点<math>f</math>为排斥子。 |
| | | |
− | If the [[dimension]] of the [[stable manifold]] of a periodic point or fixed point is zero, the point is called a ''source''; if the dimension of its [[unstable manifold]] is zero, it is called a ''sink''; and if both the stable and unstable manifold have nonzero dimension, it is called a ''saddle'' or [[saddle point]].
| |
| | | |
| 如果周期点或不动点的稳定流形的维数为零,则称其为源点;如果不稳定流形的维数为零,则称其为汇点;如果稳定流形和不稳定流形都有非零维数,则称其为鞍点。 | | 如果周期点或不动点的稳定流形的维数为零,则称其为源点;如果不稳定流形的维数为零,则称其为汇点;如果稳定流形和不稳定流形都有非零维数,则称其为鞍点。 |
第53行: |
第45行: |
| ===示例 === | | ===示例 === |
| | | |
− | A period-one point is called a [[fixed point (mathematics)|fixed point]].
| |
| | | |
| 周期为1的点也叫做[[不动点]]。 | | 周期为1的点也叫做[[不动点]]。 |
第63行: |
第54行: |
| :<math>x_{t+1}=rx_t(1-x_t), \qquad 0 \leq x_t \leq 1, \qquad 0 \leq r \leq 4</math> | | :<math>x_{t+1}=rx_t(1-x_t), \qquad 0 \leq x_t \leq 1, \qquad 0 \leq r \leq 4</math> |
| | | |
− | exhibits periodicity for various values of the parameter ''r''. For ''r'' between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence 0, 0, 0, ..., which [[attractor|attracts]] all orbits). For ''r'' between 1 and 3, the value 0 is still periodic but is not attracting, while the value {{nowrap|(''r'' − 1) / ''r''}} is an attracting periodic point of period 1. With ''r'' greater than 3 but less than 1 + {{radic|6}}, there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and {{nowrap|(''r'' − 1) / ''r''}}. As the value of parameter ''r'' rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of ''r'' one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic).
| |
| | | |
| 参数<math>r</math>随着取值的不同,呈现周期性。对于介于0到1之间的<math>r</math>,0是唯一的周期点,周期为1(给出了吸引所有轨道的序列0,0,0,... )。对于介于1到3之间的<math>r</math>,值0仍然是周期性的,但不是吸引点,而该值是周期1的吸引周期点。当<math>r</math>大于3但小于1+时,存在一对周期2的点,它们共同构成一个吸引序列,非吸引周期1点为0。当参数<math>r</math>的值上升到4时,会出现周期为正的一组周期点;对于<math>r</math>的某些值,这些重复序列中的一个被吸引,而对于其他值,则没有一个被吸引(几乎所有的轨道都是混乱的)。 | | 参数<math>r</math>随着取值的不同,呈现周期性。对于介于0到1之间的<math>r</math>,0是唯一的周期点,周期为1(给出了吸引所有轨道的序列0,0,0,... )。对于介于1到3之间的<math>r</math>,值0仍然是周期性的,但不是吸引点,而该值是周期1的吸引周期点。当<math>r</math>大于3但小于1+时,存在一对周期2的点,它们共同构成一个吸引序列,非吸引周期1点为0。当参数<math>r</math>的值上升到4时,会出现周期为正的一组周期点;对于<math>r</math>的某些值,这些重复序列中的一个被吸引,而对于其他值,则没有一个被吸引(几乎所有的轨道都是混乱的)。 |