更改

跳到导航 跳到搜索
添加787字节 、 2021年6月10日 (四) 19:21
第43行: 第43行:  
简单随机试验被认为是在每个阶层中分配受试者的最简单方法。对于每个任务,受试者被完全随机地分配到每个组中。尽管简单的随机化很容易进行,但由于取样量小,分配不均,因此在含有100多个样本的地层中,通常采用简单的随机化方法。尽管很容易进行,但简单随机试验通常应用于包含 100 个以上样本的层,因为小样本量会使分配不均等。
 
简单随机试验被认为是在每个阶层中分配受试者的最简单方法。对于每个任务,受试者被完全随机地分配到每个组中。尽管简单的随机化很容易进行,但由于取样量小,分配不均,因此在含有100多个样本的地层中,通常采用简单的随机化方法。尽管很容易进行,但简单随机试验通常应用于包含 100 个以上样本的层,因为小样本量会使分配不均等。
   −
===Block randomization within strata===
+
===分层内的区块随机试验 Block randomization within strata===
    
[[Randomized block design|Block randomization]], sometimes called permuted block randomization, applies blocks to allocate subjects from the same strata equally to each group in the study. In block randomization, allocation ratio (ratio of the number of one specific group over other groups) and group sizes are specified. The block size must be the multiples of the number of treatments so that samples in each stratum can be assigned to treatment groups with the intended ratio.<ref name=":0" /> For instance, there should be 4 or 8 strata in a clinical trial concerning breast cancer where age and nodal statuses are two prognostic factors and each factor is split into two-level. The different blocks can be assigned to samples in multiple ways including random list and computer programming.<ref>{{Cite web|url=https://www.sealedenvelope.com/help/redpill/latest/block/|title=Sealed Envelope {{!}} Random permuted blocks|date=Feb 25, 2020|website=www.sealedenvelope.com|access-date=2020-04-07}}</ref><ref>{{Citation|last1=Friedman|first1=Lawrence M.|title=Introduction to Clinical Trials|date=2010|work=Fundamentals of Clinical Trials|pages=1–18|publisher=Springer New York|isbn=978-1-4419-1585-6|last2=Furberg|first2=Curt D.|last3=DeMets|first3=David L.|doi=10.1007/978-1-4419-1586-3_1}}</ref>
 
[[Randomized block design|Block randomization]], sometimes called permuted block randomization, applies blocks to allocate subjects from the same strata equally to each group in the study. In block randomization, allocation ratio (ratio of the number of one specific group over other groups) and group sizes are specified. The block size must be the multiples of the number of treatments so that samples in each stratum can be assigned to treatment groups with the intended ratio.<ref name=":0" /> For instance, there should be 4 or 8 strata in a clinical trial concerning breast cancer where age and nodal statuses are two prognostic factors and each factor is split into two-level. The different blocks can be assigned to samples in multiple ways including random list and computer programming.<ref>{{Cite web|url=https://www.sealedenvelope.com/help/redpill/latest/block/|title=Sealed Envelope {{!}} Random permuted blocks|date=Feb 25, 2020|website=www.sealedenvelope.com|access-date=2020-04-07}}</ref><ref>{{Citation|last1=Friedman|first1=Lawrence M.|title=Introduction to Clinical Trials|date=2010|work=Fundamentals of Clinical Trials|pages=1–18|publisher=Springer New York|isbn=978-1-4419-1585-6|last2=Furberg|first2=Curt D.|last3=DeMets|first3=David L.|doi=10.1007/978-1-4419-1586-3_1}}</ref>
 +
 +
'''<font color="#ff8000"> 区块随机试验 Block randomization </font>''',有时称为置换区块随机试验,应用区块将来自同一阶层的受试者平均分配到研究中的每个组。 在区块随机试验中,指定了分配比率(一个特定组与其他组的数量之比)和组大小。 块大小必须是处理次数的倍数,以便每个层中的样本可以按预期比例分配到处理组。<ref name=":0" />例如,在一项关于乳腺癌的临床试验中,应该有 4 或 8 个层次,其中年龄和淋巴结状态是两个预后因素(prognostic factors),每个因素分为两个水平。 可以通过多种方式将不同的区块分配给样本,包括随机列表(random list)和计算机编程。
    
Block randomization is commonly used in the experiment with a relatively big sampling size to avoid the imbalance allocation of samples with important characteristics. In certain fields with strict requests of randomization such as clinical trials, the allocation would be predictable when there is no blinding process for conductors and the block size is limited. The blocks permuted randomization in strata could possibly cause an imbalance of samples among strata as the number of strata increases and the sample size is limited, For instance, there is a possibility that no sample is found meeting the characteristic of certain strata.
 
Block randomization is commonly used in the experiment with a relatively big sampling size to avoid the imbalance allocation of samples with important characteristics. In certain fields with strict requests of randomization such as clinical trials, the allocation would be predictable when there is no blinding process for conductors and the block size is limited. The blocks permuted randomization in strata could possibly cause an imbalance of samples among strata as the number of strata increases and the sample size is limited, For instance, there is a possibility that no sample is found meeting the characteristic of certain strata.
387

个编辑

导航菜单