更改

跳到导航 跳到搜索
添加3字节 、 2021年6月13日 (日) 00:19
第286行: 第286行:  
<font color="#aaaaaaa">【机器翻译】PSM 已经被证明会增加模型的“不平衡性、低效率、模型依赖性和偏差”,这与大多数其他匹配方法不同。使用匹配的见解仍然有效,但应该与其他匹配方法一起应用; 倾向得分在加权和双重稳健估计方面也有其他有益的用途。</font>
 
<font color="#aaaaaaa">【机器翻译】PSM 已经被证明会增加模型的“不平衡性、低效率、模型依赖性和偏差”,这与大多数其他匹配方法不同。使用匹配的见解仍然有效,但应该与其他匹配方法一起应用; 倾向得分在加权和双重稳健估计方面也有其他有益的用途。</font>
   −
PSM已经被证明会加剧模型的“不平衡性、低效率、模型依赖性和偏差”,这与大多数其他匹配方法不同。匹配方法背后的见解仍然成立,但应该与其他匹配方法一起应用;倾向得分在加权和双重稳健估计方面也有其他有益的用途。
+
PSM已经被证明会加剧模型的“不平衡性、低效率、模型依赖性和偏差”,这与大多数其他匹配方法不同。匹配方法背后的直观仍然成立,但应该与其他匹配方法一起应用;倾向得分在加权和双重稳健估计方面也有其他有益的用途。
 +
 
      第293行: 第294行:  
<font color="#aaaaaaa">【机器翻译】与其他匹配程序一样,PSM 从观测数据中估计平均处理效果。在引入 PSM 的时候,它的主要优点是,通过使用一个线性组合的协变量作为一个单一的评分,它平衡了治疗组和对照组在大量的协变量上,而不会失去大量的观察数据。如果处理和控制中的单元在大量的协变量上一次平衡,就需要大量的观测数据来克服“维数问题”,即引入新的平衡协变量几何地增加样本中必要的最小观测数据。</font>
 
<font color="#aaaaaaa">【机器翻译】与其他匹配程序一样,PSM 从观测数据中估计平均处理效果。在引入 PSM 的时候,它的主要优点是,通过使用一个线性组合的协变量作为一个单一的评分,它平衡了治疗组和对照组在大量的协变量上,而不会失去大量的观察数据。如果处理和控制中的单元在大量的协变量上一次平衡,就需要大量的观测数据来克服“维数问题”,即引入新的平衡协变量几何地增加样本中必要的最小观测数据。</font>
   −
与其他匹配过程一样,PSM也是从观测数据中估计平均处理效应。在引入PSM之时,它的主要优点是,通过使用协变量的线性组合得到一个单一评分,以大量的协变量为基础平衡了处理组和对照组,却不大量损失观测数据。如果在有众多协变量的情况下,对每一个些变量都分别做处理单元和对照单元平衡的话,就需要大量的观测数据来克服”维度问题“,即,每引入一个新的平衡协变量都会在几何上增加最小所需的观测样本数量。
+
与其他匹配过程一样,PSM也是从观测数据中估计平均处理效应。在引入PSM之时,它的主要优点是,通过使用协变量的线性组合得到一个单一评分,以大量的协变量为基础平衡了处理组和对照组,却不大量损失观测数据。如果在有众多协变量的情况下,对每一个些变量都分别做处理单元和对照单元平衡的话,就需要大量的观测数据来克服”维数问题“,即每引入一个新的平衡协变量都会在几何上增加最小所需的观测样本数量。
 +
 
      第301行: 第303行:     
PSM的一个缺点是它只能涵盖已观测的(和可观测的)协变量,而无法涵盖潜在变量。那些能影响处理分配却不可观测的因素无法被纳入匹配过程的考量范围。由于匹配过程只控制可观测变量,那些隐藏的偏差在匹配后依然可能存在。另一个问题是PSM还要求在大量样本中,在处理组和对照组之间有大量的重叠。
 
PSM的一个缺点是它只能涵盖已观测的(和可观测的)协变量,而无法涵盖潜在变量。那些能影响处理分配却不可观测的因素无法被纳入匹配过程的考量范围。由于匹配过程只控制可观测变量,那些隐藏的偏差在匹配后依然可能存在。另一个问题是PSM还要求在大量样本中,在处理组和对照组之间有大量的重叠。
 +
      第307行: 第310行:  
<font color="#aaaaaaa">【机器翻译】朱迪亚 · 珀尔也提出了关于配对的普遍担忧,他认为隐性偏见实际上可能会增加,因为观察变量的配对可能会由于潜在的未观察混杂因素而释放出偏见。同样,珀尔认为,只有通过建立治疗、结果、观察和未观察协变量之间的定性因果关系模型,才能确保(渐近地)减少偏见。当实验者无法控制对独立变量和因变量之间观察到的关系的替代性、非因果性解释时,混淆就发生了。这种控制应满足珍珠的“后门规范”。它也可以很容易地手动实现。</font>
 
<font color="#aaaaaaa">【机器翻译】朱迪亚 · 珀尔也提出了关于配对的普遍担忧,他认为隐性偏见实际上可能会增加,因为观察变量的配对可能会由于潜在的未观察混杂因素而释放出偏见。同样,珀尔认为,只有通过建立治疗、结果、观察和未观察协变量之间的定性因果关系模型,才能确保(渐近地)减少偏见。当实验者无法控制对独立变量和因变量之间观察到的关系的替代性、非因果性解释时,混淆就发生了。这种控制应满足珍珠的“后门规范”。它也可以很容易地手动实现。</font>
   −
Judea Pearl也提出了关于匹配方法的一般性担忧,他认为对可观测变量进行匹配可能会让那些原本处于休眠状态的混杂因素被释放,从而实际上可能加剧隐藏的偏差。同样,Pearl认为,只有通过对处理、结果、可观测和不可观测的协变量之间的定性因果关系进行建模,才能确保(渐进地)减少偏差。当试验者无法控制<font color="#32cd32">对独立变量和因变量之间观察到的关系的替代性、非因果性解释时</font>,混杂就会发生。这样的控制应该满足Pearl的“后门准则”。它很容易手工实现。
+
Judea Pearl也提出了关于匹配方法的普遍担忧,他认为对可观测变量进行匹配可能会让那些原本处于休眠状态的混杂因素被释放,从而实际上可能加剧隐藏的偏差。同样,Pearl认为,只有通过对处理、结果、可观测和不可观测的协变量之间的定性因果关系进行建模,才能确保(渐进地)减少偏差。当试验者无法控制<font color="#32cd32">对独立变量和因变量之间观察到的关系的替代性、非因果性解释时</font>,混杂就会发生。这样的控制应该满足Pearl的“后门准则”。它也很容易地手动实现。
     
15

个编辑

导航菜单