更改

跳到导航 跳到搜索
删除521字节 、 2021年6月27日 (日) 08:35
无编辑摘要
第6行: 第6行:  
[[File:Graphic_breakdown_of_stratified_random_sampling.jpeg|thumb|220x220px|分层随机抽样的图形分解 Graphic breakdown of stratified random sampling]]
 
[[File:Graphic_breakdown_of_stratified_random_sampling.jpeg|thumb|220x220px|分层随机抽样的图形分解 Graphic breakdown of stratified random sampling]]
   −
在统计学中,<font color="#ff8000"> '''分层随机试验 Stratified randomization''' </font>是一种抽样方法,首先将整个研究<font color="#ff8000"> '''总体 Population''' </font>层为具有相同属性或特征的子群,称为<font color="#ff8000"> '''分层 Attributes'''  </font>,然后从分层组中进行简单随机抽样,在抽样过程的任何阶段,随机、完全偶然地无偏抽取同一子群中的元素。<ref name=":3" /><ref>{{Citation|title=Simple random sample|date=2020-03-18|url=https://en.wikipedia.org/w/index.php?title=Simple_random_sample&oldid=946144051|work=Wikipedia|language=en|access-date=2020-04-07}}</ref>分层随机试验被认为是<font color="#ff8000"> '''分层抽样 Stratified sampling''' </font>的一个细分。当共享属性部分存在,并且在被调查总体的不同亚群之间有很大差异时,应该采用分层随机试验。因此,在取样过程中需要特别考虑或明确区分。<ref>{{Citation|title=Stratified sampling|date=2020-02-09|url=https://en.wikipedia.org/w/index.php?title=Stratified_sampling&oldid=939938944|work=Wikipedia|language=en|access-date=2020-04-07}}</ref>这种抽样方法应区别于<font color="#ff8000"> '''整群抽样方法 Cluster sampling''' </font>,整群抽样方法是在整个群体中选择一个简单的随机抽样来代表整个总体,或分层系统抽样方法,在分层过程之后进行<font color="#ff8000"> '''系统抽样 Systematic sampling''' </font>。分层随机抽样有时也称为<font color="#ff8000"> '''定额随机抽样 Quota random sampling''' </font>。<ref name=":3">{{Cite web|url=https://www.investopedia.com/ask/answers/032615/what-are-some-examples-stratified-random-sampling.asp|title=How Stratified Random Sampling Works|last=Nickolas|first=Steven|date=July 14, 2019|website=Investopedia|language=en|access-date=2020-04-07}}</ref>
+
在统计学中,'''分层随机试验 Stratified randomization'''是一种抽样方法,首先将整个研究总体层为具有相同属性或特征的子群,称为<font color="#ff8000"> '''分层 Attributes'''  </font>,然后从分层组中进行简单随机抽样,在抽样过程的任何阶段,随机、完全偶然地无偏抽取同一子群中的元素。<ref name=":3" /><ref>{{Citation|title=Simple random sample|date=2020-03-18|url=https://en.wikipedia.org/w/index.php?title=Simple_random_sample&oldid=946144051|work=Wikipedia|language=en|access-date=2020-04-07}}</ref>分层随机试验被认为是<font color="#ff8000"> '''分层抽样 Stratified sampling''' </font>的一个细分。当共享属性部分存在,并且在被调查总体的不同亚群之间有很大差异时,应该采用分层随机试验。因此,在取样过程中需要特别考虑或明确区分。<ref>{{Citation|title=Stratified sampling|date=2020-02-09|url=https://en.wikipedia.org/w/index.php?title=Stratified_sampling&oldid=939938944|work=Wikipedia|language=en|access-date=2020-04-07}}</ref>这种抽样方法应区别于<font color="#ff8000"> '''整群抽样方法 Cluster sampling''' </font>,整群抽样方法是在整个群体中选择一个简单的随机抽样来代表整个总体,或分层系统抽样方法,在分层过程之后进行<font color="#ff8000"> '''系统抽样 Systematic sampling''' </font>。分层随机抽样有时也称为<font color="#ff8000"> '''定额随机抽样 Quota random sampling''' </font>。<ref name=":3">{{Cite web|url=https://www.investopedia.com/ask/answers/032615/what-are-some-examples-stratified-random-sampling.asp|title=How Stratified Random Sampling Works|last=Nickolas|first=Steven|date=July 14, 2019|website=Investopedia|language=en|access-date=2020-04-07}}</ref>
      第15行: 第15行:     
#定义目标总体
 
#定义目标总体
#定义分层<font color="#ff8000"> '''变量 Variables''' </font>并决定要创建的分层数量。确定分层变量的标准,包括年龄、社会经济地位、国籍、种族、教育程度等,并应与研究目标相一致。理想情况下,应该使用4-6个阶层,因为任何分层变量的增加将提高其中一些变量抵消其他变量的影响的概率。<ref name=":5" />
+
#定义分层变量并决定要创建的分层数量。确定分层变量的标准,包括年龄、社会经济地位、国籍、种族、教育程度等,并应与研究目标相一致。理想情况下,应该使用4-6个阶层,因为任何分层变量的增加将提高其中一些变量抵消其他变量的影响的概率。<ref name=":5" />
 
#使用<font color="#ff8000"> '''抽样框架 Sampling frame''' </font>评估目标总体中的所有元素。之后根据<font color="#ff8000"> '''覆盖率 Coverage''' </font> 和分组进行更改。
 
#使用<font color="#ff8000"> '''抽样框架 Sampling frame''' </font>评估目标总体中的所有元素。之后根据<font color="#ff8000"> '''覆盖率 Coverage''' </font> 和分组进行更改。
#列出所有的元素并考虑抽样结果。每个阶层应该相互排斥 Mutually exclusive,加起来涵盖总体的所有成员,而总体的每一个成员应该属于唯一的阶层,和其他差异最小的成员一起。<ref name=":4" />
+
#列出所有的元素并考虑抽样结果。每个阶层应该相互排斥e,加起来涵盖总体的所有成员,而总体的每一个成员应该属于唯一的阶层,和其他差异最小的成员一起。<ref name=":4" />
 
#决定随机抽样的选择标准。这可以手动完成,也可以用设计好的计算机程序完成。
 
#决定随机抽样的选择标准。这可以手动完成,也可以用设计好的计算机程序完成。
 
#为所有元素分配一个随机且唯一的编号,然后根据分配的编号对这些元素进行排序。
 
#为所有元素分配一个随机且唯一的编号,然后根据分配的编号对这些元素进行排序。
第27行: 第27行:  
[[File:Simple_random_sampling_after_stratification_step.png|thumb|分层后简单随机抽样]]
 
[[File:Simple_random_sampling_after_stratification_step.png|thumb|分层后简单随机抽样]]
   −
分层随机试验决定一个或多个预后因素(prognostic factors),在平均意义下,这些预后因素使每个亚组具有相似的进入特征。通过检查先前研究的结果,可以准确地确定患者因素。<ref>{{Cite journal|last=Sylvester|first=Richard|date=December 1982|title=Fundamentals of clinical trials|journal=Controlled Clinical Trials|volume=3|issue=4|pages=385–386|doi=10.1016/0197-2456(82)90029-0|issn=0197-2456}}</ref>
+
分层随机试验决定一个或多个<font color="#ff8000"> '''预后因素 prognostic factors''' </font>,在平均意义下,这些预后因素使每个亚组具有相似的进入特征。通过检查先前研究的结果,可以准确地确定患者因素。<ref>{{Cite journal|last=Sylvester|first=Richard|date=December 1982|title=Fundamentals of clinical trials|journal=Controlled Clinical Trials|volume=3|issue=4|pages=385–386|doi=10.1016/0197-2456(82)90029-0|issn=0197-2456}}</ref>
      第43行: 第43行:  
===分层内的区块随机试验===
 
===分层内的区块随机试验===
   −
'''<font color="#ff8000"> 区块随机试验 Block randomization </font>''',有时称为置换区块随机试验,应用区块将来自同一阶层的受试者平均分配到研究中的每个组。 在区块随机试验中,指定了分配比率(一个特定组与其他组的数量之比)和组大小。 块大小必须是处理次数的倍数,以便每个层中的样本可以按预期比例分配到处理组。<ref name=":0">{{Cite book|last=Pocock, Stuart J.|title=Clinical trials : a practical approach|publisher=John Wiley & Sons Ltd|date=Jul 1, 2013|isbn=978-1-118-79391-6|location=Chichester|oclc=894581169}}</ref>例如,在一项关于乳腺癌的临床试验中,应该有 4 或 8 个层次,其中年龄和淋巴结状态是两个预后因素(prognostic factors),每个因素分为两个水平。 可以通过多种方式将不同的区块分配给样本,包括随机列表和计算机编程。<ref>{{Cite web|url=https://www.sealedenvelope.com/help/redpill/latest/block/|title=Sealed Envelope {{!}} Random permuted blocks|date=Feb 25, 2020|website=www.sealedenvelope.com|access-date=2020-04-07}}</ref><ref>{{Citation|last1=Friedman|first1=Lawrence M.|title=Introduction to Clinical Trials|date=2010|work=Fundamentals of Clinical Trials|pages=1–18|publisher=Springer New York|isbn=978-1-4419-1585-6|last2=Furberg|first2=Curt D.|last3=DeMets|first3=David L.|doi=10.1007/978-1-4419-1586-3_1}}</ref>
+
'''区块随机试验''',有时称为置换区块随机试验,应用区块将来自同一阶层的受试者平均分配到研究中的每个组。 在区块随机试验中,指定了分配比率(一个特定组与其他组的数量之比)和组大小。 块大小必须是处理次数的倍数,以便每个层中的样本可以按预期比例分配到处理组。<ref name=":0">{{Cite book|last=Pocock, Stuart J.|title=Clinical trials : a practical approach|publisher=John Wiley & Sons Ltd|date=Jul 1, 2013|isbn=978-1-118-79391-6|location=Chichester|oclc=894581169}}</ref>例如,在一项关于乳腺癌的临床试验中,应该有 4 或 8 个层次,其中年龄和淋巴结状态是两个预后因素,每个因素分为两个水平。 可以通过多种方式将不同的区块分配给样本,包括随机列表和计算机编程。<ref>{{Cite web|url=https://www.sealedenvelope.com/help/redpill/latest/block/|title=Sealed Envelope {{!}} Random permuted blocks|date=Feb 25, 2020|website=www.sealedenvelope.com|access-date=2020-04-07}}</ref><ref>{{Citation|last1=Friedman|first1=Lawrence M.|title=Introduction to Clinical Trials|date=2010|work=Fundamentals of Clinical Trials|pages=1–18|publisher=Springer New York|isbn=978-1-4419-1585-6|last2=Furberg|first2=Curt D.|last3=DeMets|first3=David L.|doi=10.1007/978-1-4419-1586-3_1}}</ref>
      −
区块随机试验通常用于样本量较大的实验,以避免具有重要特征的样本分配不平衡。 在某些对随机试验有严格要求的领域,如临床试验,当没有对导体(conductors)进行盲法处理且区块块大小有限时,分配是可预测的。 分层中的块置换随机试验可能会随着分层数量的增加和样本量的限制而导致分层之间的样本不平衡,例如,有可能找不到符合某些分层特征的样本<ref>{{Cite book|title=Fundamentals of clinical trials|others=Friedman, Lawrence M., 1942-, Furberg, Curt,, DeMets, David L., 1944-, Reboussin, David,, Granger, Christopher B.|date=27 August 2015|isbn=978-3-319-18539-2|edition=Fifth|location=New York|oclc=919463985}}</ref>。
+
区块随机试验通常用于样本量较大的实验,以避免具有重要特征的样本分配不平衡。在某些对随机试验有严格要求的领域,如临床试验,当没有对导体进行盲法处理且区块大小有限时,分配是可预测的。 分层中的块置换随机试验可能会随着分层数量的增加和样本量的限制而导致分层之间的样本不平衡,例如,有可能找不到符合某些分层特征的样本<ref>{{Cite book|title=Fundamentals of clinical trials|others=Friedman, Lawrence M., 1942-, Furberg, Curt,, DeMets, David L., 1944-, Reboussin, David,, Granger, Christopher B.|date=27 August 2015|isbn=978-3-319-18539-2|edition=Fifth|location=New York|oclc=919463985}}</ref>。
      第61行: 第61行:       −
当研究人员打算寻找两个或多个层次之间的关联时,分层随机化很有帮助,因为简单的随机抽样会导致更大的可能出现目标群体的不平等代表性。当研究人员希望消除观察性研究中的'''<font color="#ff8000"> 混杂因素 Confounder </font>'''时,它也很有用,因为分层随机试验允许调整'''<font color="#ff8000"> 协方差 Covariances </font>'''和 '''<font color="#ff8000"> p </font>'''以获得更准确的结果。 <ref>{{Cite book|last=Hennekens, Charles H.|title=Epidemiology in medicine|date=1987|publisher=Little, Brown|others=Buring, Julie E., Mayrent, Sherry L.|isbn=0-316-35636-0|edition=1st|location=Boston, Massachusetts|oclc=16890223}}</ref>
+
当研究人员打算寻找两个或多个层次之间的关联时,分层随机化很有帮助,因为简单的随机抽样会导致更大的可能出现目标群体的不平等代表性。当研究人员希望消除观察性研究中的'''<font color="#ff8000"> 混杂因素 Confounder </font>'''时,它也很有用,因为分层随机试验允许调整协方差和p 值 以获得更准确的结果。 <ref>{{Cite book|last=Hennekens, Charles H.|title=Epidemiology in medicine|date=1987|publisher=Little, Brown|others=Buring, Julie E., Mayrent, Sherry L.|isbn=0-316-35636-0|edition=1st|location=Boston, Massachusetts|oclc=16890223}}</ref>
      −
与简单随机抽样相比,分层随机抽样的统计准确度也更高,因为选择代表总体的元素具有高度相关性。<ref name=":5" />与分层之间的差异相比,分层内的差异要小得多。因此,随着样本间差异的最小化,'''<font color="#ff8000"> 标准差 Standard deviation </font>'''也会随之收紧,从而导致最终结果的准确性更高,误差更小。当研究资金紧张时,这有效地减少了所需的样本量并提高了抽样的'''<font color="#ff8000"> 成本效益 Cost-effectiveness </font>'''。
+
与简单随机抽样相比,分层随机抽样的统计准确度也更高,因为选择代表总体的元素具有高度相关性。<ref name=":5" />与分层之间的差异相比,分层内的差异要小得多。因此,随着样本间差异的最小化,标准差也会随之收紧,从而导致最终结果的准确性更高,误差更小。当研究资金紧张时,这有效地减少了所需的样本量并提高了抽样的'''<font color="#ff8000"> 成本效益 Cost-effectiveness </font>'''。
      第72行: 第72行:  
==临床试验中的分层随机试验==
 
==临床试验中的分层随机试验==
   −
在'''<font color="#ff8000"> 临床试验 Clinical trials </font>'''中,根据患者的社会和个人背景或与研究相关的任何因素对患者进行分层,以匹配整个患者群体中的每个组。 这样做的目的是建立临床/预后因素(prognostic factor)的平衡,因为如果研究设计不平衡,试验将不会产生有效的结果。<ref>{{Cite book|last1=Polit|first1=DF|title=Nursing Research: Generating and Assessing Evidence for Nursing Practice, 9th ed.|last2=Beck|first2=CT|publisher=Lippincott Williams & Wilkins.|year=2012|location=Philadelphia, USA: Wolters Klower Health}}</ref>  分层随机化的步骤非常重要,因为它试图确保没有偏见、有意或无意地影响所研究患者样本的代表性。 <ref>{{Cite web|url=https://www.omixon.com/patient-stratification-in-clinical-trials/|title=Patient Stratification in Clinical Trials|date=2014-12-01|website=Omixon {{!}} NGS for HLA|language=en-US|access-date=2020-04-26}}</ref>  它增加了研究能力,尤其是在小型临床试验中(n<400),因为这些已知的临床特征分层被认为会影响干预的结果。<ref>{{Cite web|url=https://www.statisticshowto.com/stratified-randomization/|title=Stratified Randomization in Clinical Trials|last=Stephanie|date=2016-05-20|website=Statistics How To|language=en-US|access-date=2020-04-26}}</ref>它有助于防止在临床研究中受到高度重视的 '''<font color="#ff8000"> I 型错误 Type I error </font>'''的发生。 <ref name=":6">{{Cite journal|last=Kernan|first=W|date=Jan 1999|title=Stratified Randomization for Clinical Trials|journal=Journal of Clinical Epidemiology|volume=52|issue=1|pages=19–26|doi=10.1016/S0895-4356(98)00138-3|pmid=9973070}}</ref>它还对主动对照等效试验的样本量产生重要影响,并且在理论上有助于'''<font color="#ff8000"> 亚组分析 Subgroup analysis </font>'''和'''<font color="#ff8000"> 中期分析 Interim analysis </font>'''。 <ref name=":6" />
+
在临床试验中,根据患者的社会和个人背景或与研究相关的任何因素对患者进行分层,以匹配整个患者群体中的每个组。 这样做的目的是建立临床/预后因素的平衡,因为如果研究设计不平衡,试验将不会产生有效的结果。<ref>{{Cite book|last1=Polit|first1=DF|title=Nursing Research: Generating and Assessing Evidence for Nursing Practice, 9th ed.|last2=Beck|first2=CT|publisher=Lippincott Williams & Wilkins.|year=2012|location=Philadelphia, USA: Wolters Klower Health}}</ref>  分层随机化的步骤非常重要,因为它试图确保没有偏见、有意或无意地影响所研究患者样本的代表性。 <ref>{{Cite web|url=https://www.omixon.com/patient-stratification-in-clinical-trials/|title=Patient Stratification in Clinical Trials|date=2014-12-01|website=Omixon {{!}} NGS for HLA|language=en-US|access-date=2020-04-26}}</ref>  它增加了研究能力,尤其是在小型临床试验中(n<400),因为这些已知的临床特征分层被认为会影响干预的结果。<ref>{{Cite web|url=https://www.statisticshowto.com/stratified-randomization/|title=Stratified Randomization in Clinical Trials|last=Stephanie|date=2016-05-20|website=Statistics How To|language=en-US|access-date=2020-04-26}}</ref>它有助于防止在临床研究中受到高度重视的 '''<font color="#ff8000"> I 型错误 Type I error </font>'''的发生。 <ref name=":6">{{Cite journal|last=Kernan|first=W|date=Jan 1999|title=Stratified Randomization for Clinical Trials|journal=Journal of Clinical Epidemiology|volume=52|issue=1|pages=19–26|doi=10.1016/S0895-4356(98)00138-3|pmid=9973070}}</ref>它还对主动对照等效试验的样本量产生重要影响,并且在理论上有助于'''<font color="#ff8000"> 亚组分析 Subgroup analysis </font>'''和'''<font color="#ff8000"> 中期分析 Interim analysis </font>'''。 <ref name=":6" />
      第79行: 第79行:     
#分层随机试验可以准确反映一般人群的结果,因为应用影响因素对整个样本进行分层并平衡样本在治疗组之间的重要特征。例如,采用分层随机化从人群中抽取 100 名样本可以保证每个治疗组的男女平衡,而使用简单随机化可能会导致一组只有 20 名男性,而另一组有 80 名男性。<ref name=":0" />
 
#分层随机试验可以准确反映一般人群的结果,因为应用影响因素对整个样本进行分层并平衡样本在治疗组之间的重要特征。例如,采用分层随机化从人群中抽取 100 名样本可以保证每个治疗组的男女平衡,而使用简单随机化可能会导致一组只有 20 名男性,而另一组有 80 名男性。<ref name=":0" />
#分层随机试验比其他抽样方法(例如'''<font color="#ff8000"> 整群抽样 Cluster sampling </font>'''、简单随机抽样 和'''<font color="#ff8000"> 系统抽样 Systematic sampling </font>'''或'''<font color="#ff8000"> 非概率方法 Non-probability methods </font>''')的误差更小,因为可以使分层内的测量具有较低的标准差。在某些情况下,将分割的分层随机试验比简单地随机试验一般样本更易于管理且成本更低。<ref name=":1" />
+
#分层随机试验比其他抽样方法(例如整群抽样、简单随机抽样 和系统抽样或'''<font color="#ff8000"> 非概率方法 Non-probability methods </font>''')的误差更小,因为可以使分层内的测量具有较低的标准差。在某些情况下,将分割的分层随机试验比简单地随机试验一般样本更易于管理且成本更低。<ref name=":1" />
 
#由于分层随机试验本质的精确性,团队更容易接受分层样本的训练。
 
#由于分层随机试验本质的精确性,团队更容易接受分层样本的训练。
 
#由于这种方法的统计准确性,研究人员可以通过分析小样本得到非常有用的结果。
 
#由于这种方法的统计准确性,研究人员可以通过分析小样本得到非常有用的结果。
 
#这种抽样技术涵盖了广泛的总体,因为已经对分层划分进行了完整的控制。
 
#这种抽样技术涵盖了广泛的总体,因为已经对分层划分进行了完整的控制。
 
# 有时需要分层随机试验来估计总体中各组的总体参数。<ref name=":1" />
 
# 有时需要分层随机试验来估计总体中各组的总体参数。<ref name=":1" />
 +
    
==缺点==
 
==缺点==
第96行: 第97行:     
==参考文献==
 
==参考文献==
 +
<references/>
 
{{Citation|last1=Glass|first1=Aenne|title=Potential Advantages and Disadvantages of Stratification in Methods of Randomization|date=2014|work=Springer Proceedings in Mathematics & Statistics|pages=239–246|publisher=Springer New York|isbn=978-1-4939-2103-4|last2=Kundt|first2=Guenther|doi=10.1007/978-1-4939-2104-1_23}}</ref>
 
{{Citation|last1=Glass|first1=Aenne|title=Potential Advantages and Disadvantages of Stratification in Methods of Randomization|date=2014|work=Springer Proceedings in Mathematics & Statistics|pages=239–246|publisher=Springer New York|isbn=978-1-4939-2103-4|last2=Kundt|first2=Guenther|doi=10.1007/978-1-4939-2104-1_23}}</ref>
  
7,129

个编辑

导航菜单