第9行: |
第9行: |
| | | |
| [[File:MUexperiment.png|thumb|upright=1.5|实验]] | | [[File:MUexperiment.png|thumb|upright=1.5|实验]] |
− |
| |
− | The experiment
| |
− |
| |
− |
| |
− |
| |
− |
| |
− |
| |
− | The '''Miller–Urey experiment'''<ref>{{cite journal |vauthors=Hill HG, Nuth JA |title=The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems |journal=Astrobiology |volume=3 |issue=2 |pages=291–304 |year=2003 |pmid=14577878 |doi=10.1089/153110703769016389|bibcode = 2003AsBio...3..291H}}</ref> (or '''Miller experiment''')<ref>{{cite journal | title=The analysis of comet mass spectrometric data |author1=Balm SP |author2=Hare J.P. |author3=Kroto HW | journal=Space Science Reviews| year=1991| volume=56|issue=1–2 | pages=185–9 |doi=10.1007/BF00178408 | bibcode=1991SSRv...56..185B|url=https://www.semanticscholar.org/paper/9bce3627fcb31bac372e6610472e59008703ec4b }}</ref> was a chemical [[experiment]] that simulated the conditions thought at the time (1952) to be present on the [[early Earth]] and tested the [[abiogenesis|chemical origin of life]] under those conditions. The experiment at the time supported [[Alexander Oparin]]'s and [[J. B. S. Haldane]]'s hypothesis that putative conditions on the primitive Earth favoured chemical reactions that synthesized more complex [[organic compound]]s from simpler inorganic precursors. Considered to be the classic experiment investigating [[abiogenesis]], it was performed in 1952 by [[Stanley Miller]], supervised by [[Harold Urey]] at the [[University of Chicago]], and published the following year.<ref name=miller1953>{{cite journal |last=Miller |first=Stanley L. |url=http://www.abenteuer-universum.de/pdf/miller_1953.pdf |title=Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |year=1953 |volume=117 |pages=528–9 |doi=10.1126/science.117.3046.528 |pmid=13056598 |issue=3046 |bibcode=1953Sci...117..528M |url-status=dead |archiveurl=https://web.archive.org/web/20120317062622/http://www.abenteuer-universum.de/pdf/miller_1953.pdf |archivedate=2012-03-17 |access-date=2011-01-17 }}</ref><ref>{{cite journal |last=Miller |first=Stanley L. |author2=Harold C. Urey |title=Organic Compound Synthesis on the Primitive Earth |journal=[[Science (journal)|Science]] |year=1959 |volume=130 |pages=245–51 |doi=10.1126/science.130.3370.245 |pmid=13668555 |issue=3370|bibcode = 1959Sci...130..245M}} Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.</ref><ref>{{cite journal |title=The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry |author1=A. Lazcano |author2=J. L. Bada |journal=Origins of Life and Evolution of Biospheres |volume=33 |year=2004 |pages=235–242 |doi=10.1023/A:1024807125069 |pmid=14515862 |issue=3|url=https://www.semanticscholar.org/paper/beda7cb912470cec6e1bf2d13535edeedf6c5b16 |bibcode=2003OLEB...33..235L }}</ref>
| |
− |
| |
− | The Miller–Urey experiment (or Miller experiment) was a chemical experiment that simulated the conditions thought at the time (1952) to be present on the early Earth and tested the chemical origin of life under those conditions. The experiment at the time supported Alexander Oparin's and J. B. S. Haldane's hypothesis that putative conditions on the primitive Earth favoured chemical reactions that synthesized more complex organic compounds from simpler inorganic precursors. Considered to be the classic experiment investigating abiogenesis, it was performed in 1952 by Stanley Miller, supervised by Harold Urey at the University of Chicago, and published the following year.
| |
| | | |
| '''米勒尤里实验 Miller–Urey experiment'''<ref>{{cite journal |vauthors=Hill HG, Nuth JA |title=The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems |journal=Astrobiology |volume=3 |issue=2 |pages=291–304 |year=2003 |pmid=14577878 |doi=10.1089/153110703769016389|bibcode = 2003AsBio...3..291H}}</ref> ((或称米勒实验 Miller experiment)<ref>{{cite journal | title=The analysis of comet mass spectrometric data |author1=Balm SP |author2=Hare J.P. |author3=Kroto HW | journal=Space Science Reviews| year=1991| volume=56|issue=1–2 | pages=185–9 |doi=10.1007/BF00178408 | bibcode=1991SSRv...56..185B|url=https://www.semanticscholar.org/paper/9bce3627fcb31bac372e6610472e59008703ec4b }}</ref>是一个化学实验,模拟了当时(1952年)人们认为的地球早期环境并测验了在这些条件下生命的化学起源。当时的实验支持了亚历山大·奥帕林 Alexander Oparin和J·B·S·霍尔丹 J·B·S·Haldane的假说,即假设存在于原始地球上的条件是有利于简单无机物合成为更复杂有机物这一类化学反应的发生的。该实验被认为是研究'''无生源说 abiogenesis'''的经典之作,1952年由斯坦利·米勒 Stanlely Miller主持,芝加哥大学的哈罗德·尤里 Harold Urey监督,并于次年发表<ref name=miller1953>{{cite journal |last=Miller |first=Stanley L. |url=http://www.abenteuer-universum.de/pdf/miller_1953.pdf |title=Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |year=1953 |volume=117 |pages=528–9 |doi=10.1126/science.117.3046.528 |pmid=13056598 |issue=3046 |bibcode=1953Sci...117..528M |url-status=dead |archiveurl=https://web.archive.org/web/20120317062622/http://www.abenteuer-universum.de/pdf/miller_1953.pdf |archivedate=2012-03-17 |access-date=2011-01-17 }}</ref><ref>{{cite journal |last=Miller |first=Stanley L. |author2=Harold C. Urey |title=Organic Compound Synthesis on the Primitive Earth |journal=[[Science (journal)|Science]] |year=1959 |volume=130 |pages=245–51 |doi=10.1126/science.130.3370.245 |pmid=13668555 |issue=3370|bibcode = 1959Sci...130..245M}} Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.</ref><ref>{{cite journal |title=The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry |author1=A. Lazcano |author2=J. L. Bada |journal=Origins of Life and Evolution of Biospheres |volume=33 |year=2004 |pages=235–242 |doi=10.1023/A:1024807125069 |pmid=14515862 |issue=3|url=https://www.semanticscholar.org/paper/beda7cb912470cec6e1bf2d13535edeedf6c5b16 |bibcode=2003OLEB...33..235L }}</ref> | | '''米勒尤里实验 Miller–Urey experiment'''<ref>{{cite journal |vauthors=Hill HG, Nuth JA |title=The catalytic potential of cosmic dust: implications for prebiotic chemistry in the solar nebula and other protoplanetary systems |journal=Astrobiology |volume=3 |issue=2 |pages=291–304 |year=2003 |pmid=14577878 |doi=10.1089/153110703769016389|bibcode = 2003AsBio...3..291H}}</ref> ((或称米勒实验 Miller experiment)<ref>{{cite journal | title=The analysis of comet mass spectrometric data |author1=Balm SP |author2=Hare J.P. |author3=Kroto HW | journal=Space Science Reviews| year=1991| volume=56|issue=1–2 | pages=185–9 |doi=10.1007/BF00178408 | bibcode=1991SSRv...56..185B|url=https://www.semanticscholar.org/paper/9bce3627fcb31bac372e6610472e59008703ec4b }}</ref>是一个化学实验,模拟了当时(1952年)人们认为的地球早期环境并测验了在这些条件下生命的化学起源。当时的实验支持了亚历山大·奥帕林 Alexander Oparin和J·B·S·霍尔丹 J·B·S·Haldane的假说,即假设存在于原始地球上的条件是有利于简单无机物合成为更复杂有机物这一类化学反应的发生的。该实验被认为是研究'''无生源说 abiogenesis'''的经典之作,1952年由斯坦利·米勒 Stanlely Miller主持,芝加哥大学的哈罗德·尤里 Harold Urey监督,并于次年发表<ref name=miller1953>{{cite journal |last=Miller |first=Stanley L. |url=http://www.abenteuer-universum.de/pdf/miller_1953.pdf |title=Production of Amino Acids Under Possible Primitive Earth Conditions |journal=[[Science (journal)|Science]] |year=1953 |volume=117 |pages=528–9 |doi=10.1126/science.117.3046.528 |pmid=13056598 |issue=3046 |bibcode=1953Sci...117..528M |url-status=dead |archiveurl=https://web.archive.org/web/20120317062622/http://www.abenteuer-universum.de/pdf/miller_1953.pdf |archivedate=2012-03-17 |access-date=2011-01-17 }}</ref><ref>{{cite journal |last=Miller |first=Stanley L. |author2=Harold C. Urey |title=Organic Compound Synthesis on the Primitive Earth |journal=[[Science (journal)|Science]] |year=1959 |volume=130 |pages=245–51 |doi=10.1126/science.130.3370.245 |pmid=13668555 |issue=3370|bibcode = 1959Sci...130..245M}} Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.</ref><ref>{{cite journal |title=The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry |author1=A. Lazcano |author2=J. L. Bada |journal=Origins of Life and Evolution of Biospheres |volume=33 |year=2004 |pages=235–242 |doi=10.1023/A:1024807125069 |pmid=14515862 |issue=3|url=https://www.semanticscholar.org/paper/beda7cb912470cec6e1bf2d13535edeedf6c5b16 |bibcode=2003OLEB...33..235L }}</ref> |
| 。 | | 。 |
| | | |
− | | + | 2007年Miller去世后,科学家们检查了从原始实验中保存下来的密封小瓶,发现在Miller原始实验中事实上产生了超过20种不同的'''氨基酸 amino acids '''。<ref name="BBC"/> 这大大超过了Miller最初报道的数量,也超过了'''遗传密码 genetic code'''中自然产生的20种。<ref name=bada2013>{{cite journal|last1=Bada|first1=Jeffrey L.|title=New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments|journal=Chemical Society Reviews|year=2013|volume=42|issue=5|pages=2186–96|doi=10.1039/c3cs35433d|pmid=23340907|url=https://semanticscholar.org/paper/6f463e8a3611fa7f25c143991dfddac49c396b73}}</ref> |
− | | |
− | After Miller's death in 2007, scientists examining sealed vials preserved from the original experiments were able to show that there were actually well over 20 different [[amino acid]]s produced in Miller's original experiments. That is considerably more than what Miller originally reported, and more than the 20 that naturally occur in the genetic code.<ref name="BBC"/> More recent evidence suggests that Earth's original atmosphere might have had a composition different from the gas used in the Miller experiment, but prebiotic experiments continue to produce [[racemic mixture]]s of simple-to-complex compounds under varying conditions.<ref name=bada2013>{{cite journal|last1=Bada|first1=Jeffrey L.|title=New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments|journal=Chemical Society Reviews|year=2013|volume=42|issue=5|pages=2186–96|doi=10.1039/c3cs35433d|pmid=23340907|url=https://semanticscholar.org/paper/6f463e8a3611fa7f25c143991dfddac49c396b73}}</ref>
| |
− | | |
− | After Miller's death in 2007, scientists examining sealed vials preserved from the original experiments were able to show that there were actually well over 20 different amino acids produced in Miller's original experiments. That is considerably more than what Miller originally reported, and more than the 20 that naturally occur in the genetic code.
| |
− | | |
− | 2007年Miller去世后,科学家们检查了从原始实验中保存下来的密封小瓶,发现在Miller原始实验中事实上产生了超过20种不同的'''氨基酸 amino acids '''。这大大超过了Miller最初报道的数量,也超过了'''遗传密码 genetic code'''中自然产生的20种。
| |
| | | |
| | | |
第35行: |
第19行: |
| == Experiment实验 == | | == Experiment实验 == |
| | | |
− | [[File:Miller-Urey experiment - Work by the C3BC consortium, licensed under CC-BY-3.0.webm|thumb|Descriptive video of the experiment]] | + | [[File:Miller-Urey experiment - Work by the C3BC consortium, licensed under CC-BY-3.0.webm|thumb|实验的描述性视频]] |
| | | |
− | Descriptive video of the experiment
| |
− |
| |
− | 实验的描述性视频
| |
− |
| |
− | The experiment used [[water]] (H<sub>2</sub>O), [[methane]] (CH<sub>4</sub>), [[ammonia]] (NH<sub>3</sub>), and [[hydrogen]] (H<sub>2</sub>). The chemicals were all sealed inside a sterile 5-liter glass flask connected to a 500 ml flask half-full of water. The water in the smaller flask was heated to induce [[evaporation]], and the water vapour was allowed to enter the larger flask. Continuous electrical sparks were fired between the electrodes to simulate [[lightning]] in the water vapour and gaseous mixture, and then the simulated atmosphere was cooled again so that the water condensed and trickled into a U-shaped trap at the bottom of the apparatus.
| |
− |
| |
− | The experiment used water (H<sub>2</sub>O), methane (CH<sub>4</sub>), ammonia (NH<sub>3</sub>), and hydrogen (H<sub>2</sub>). The chemicals were all sealed inside a sterile 5-liter glass flask connected to a 500 ml flask half-full of water. The water in the smaller flask was heated to induce evaporation, and the water vapour was allowed to enter the larger flask. Continuous electrical sparks were fired between the electrodes to simulate lightning in the water vapour and gaseous mixture, and then the simulated atmosphere was cooled again so that the water condensed and trickled into a U-shaped trap at the bottom of the apparatus.
| |
| | | |
| 实验用水(H2O)、'''甲烷 methane'''(CH4)、'''氨 ammonia'''(NH3)和'''氢 hydrogen '''(H 2)。所有的化学物质都被密封在一个5升的无菌玻璃瓶里,这个玻璃瓶连接着一个500毫升的半满水的烧瓶。将小烧瓶中的水加热以诱导蒸发,使水蒸气进入大烧瓶。在电极之间连续地点燃电火花,在水蒸气和气体混合物中模拟闪电。然后再次冷却模拟的大气,使水凝结并滴入装置底部的U形曲管中。 | | 实验用水(H2O)、'''甲烷 methane'''(CH4)、'''氨 ammonia'''(NH3)和'''氢 hydrogen '''(H 2)。所有的化学物质都被密封在一个5升的无菌玻璃瓶里,这个玻璃瓶连接着一个500毫升的半满水的烧瓶。将小烧瓶中的水加热以诱导蒸发,使水蒸气进入大烧瓶。在电极之间连续地点燃电火花,在水蒸气和气体混合物中模拟闪电。然后再次冷却模拟的大气,使水凝结并滴入装置底部的U形曲管中。 |
| | | |
− |
| |
− |
| |
− | After a day, the solution collected at the trap had turned pink in colour, and after a week of continuous operation the solution was deep red and turbid.<ref name=miller1953/> The boiling flask was then removed, and mercuric chloride was added to prevent microbial contamination. The reaction was stopped by adding barium hydroxide and sulfuric acid, and evaporated to remove impurities. Using [[paper chromatography]], Miller identified five amino acids present in the solution: [[glycine]], [[alanine|α-alanine]] and [[beta-Alanine|β-alanine]] were positively identified, while [[aspartic acid]] and [[alpha-Aminobutyric acid|α-aminobutyric acid]] (AABA) were less certain, due to the spots being faint.<ref name=miller1953/>
| |
− |
| |
− | After a day, the solution collected at the trap had turned pink in colour, and after a week of continuous operation the solution was deep red and turbid.
| |
| | | |
| 一天之后,在管内收集到的溶液变成了粉红色,而在连续操作一周之后,溶液变成了深红并且混浊的液体<ref name=miller1953/> The boiling flask was then removed, and mercuric chloride was added to prevent microbial contamination. The reaction was stopped by adding barium hydroxide and sulfuric acid, and evaporated to remove impurities. Using [[paper chromatography]], Miller identified five amino acids present in the solution: [[glycine]], [[alanine|α-alanine]] and [[beta-Alanine|β-alanine]] were positively identified, while [[aspartic acid]] and [[alpha-Aminobutyric acid|α-aminobutyric acid]] (AABA) were less certain, due to the spots being faint.<ref name=miller1953/>。 | | 一天之后,在管内收集到的溶液变成了粉红色,而在连续操作一周之后,溶液变成了深红并且混浊的液体<ref name=miller1953/> The boiling flask was then removed, and mercuric chloride was added to prevent microbial contamination. The reaction was stopped by adding barium hydroxide and sulfuric acid, and evaporated to remove impurities. Using [[paper chromatography]], Miller identified five amino acids present in the solution: [[glycine]], [[alanine|α-alanine]] and [[beta-Alanine|β-alanine]] were positively identified, while [[aspartic acid]] and [[alpha-Aminobutyric acid|α-aminobutyric acid]] (AABA) were less certain, due to the spots being faint.<ref name=miller1953/>。 |
| | | |
− |
| |
− |
| |
− | In a 1996 interview, Stanley Miller recollected his lifelong experiments following his original work and stated: "Just turning on the spark in a basic pre-biotic experiment will yield 11 out of 20 amino acids."<ref>{{cite web|url=http://www.accessexcellence.org/WN/NM/miller.php |title=Exobiology: An Interview with Stanley L. Miller |publisher=Accessexcellence.org |archiveurl=https://web.archive.org/web/20080518054852/http://www.accessexcellence.org/WN/NM/miller.php |archivedate=May 18, 2008 |accessdate=2009-08-20}}</ref>
| |
| | | |
| 在1996年的一次采访中,斯坦利·米勒 Stanley Miller回忆了他这一生中在最初工作基础上所做的一系列实验,并宣称:“仅仅是在基础前生命实验中点燃火花就可以产生20种氨基酸里的11种。” <ref>{{cite web|url=http://www.accessexcellence.org/WN/NM/miller.php |title=Exobiology: An Interview with Stanley L. Miller |publisher=Accessexcellence.org |archiveurl=https://web.archive.org/web/20080518054852/http://www.accessexcellence.org/WN/NM/miller.php |archivedate=May 18, 2008 |accessdate=2009-08-20}}</ref> | | 在1996年的一次采访中,斯坦利·米勒 Stanley Miller回忆了他这一生中在最初工作基础上所做的一系列实验,并宣称:“仅仅是在基础前生命实验中点燃火花就可以产生20种氨基酸里的11种。” <ref>{{cite web|url=http://www.accessexcellence.org/WN/NM/miller.php |title=Exobiology: An Interview with Stanley L. Miller |publisher=Accessexcellence.org |archiveurl=https://web.archive.org/web/20080518054852/http://www.accessexcellence.org/WN/NM/miller.php |archivedate=May 18, 2008 |accessdate=2009-08-20}}</ref> |
| | | |
− |
| |
− | The original experiment remained in 2017 under the care of Miller and Urey's former student [[Jeffrey Bada]], a professor at the [[University of California, San Diego|UCSD]], [[Scripps Institution of Oceanography]].<ref>{{cite news |url=https://www.nytimes.com/2010/05/18/science/18conv.html |title=A Conversation With Jeffrey L. Bada: A Marine Chemist Studies How Life Began |newspaper=nytimes.com |date=2010-05-17 |first=Claudia |last=Dreifus |authorlink=Claudia Dreifus |url-status=live |archiveurl=https://web.archive.org/web/20170118034218/http://www.nytimes.com/2010/05/18/science/18conv.html |archivedate=2017-01-18 }}</ref> {{asof|2013}}, the apparatus used to conduct the experiment was on display at the [[Denver Museum of Nature and Science]].<ref>{{cite news|url=http://www.dmns.org/science/museum-scientists/david-grinspoon/funky-science-wonder-lab/research-updates/astrobiology-collection-miller-urey-apparatus | title=Astrobiology Collection: Miller-Urey Apparatus |archiveurl=https://web.archive.org/web/20130524090309/http://www.dmns.org/science/museum-scientists/david-grinspoon/funky-science-wonder-lab/research-updates/astrobiology-collection-miller-urey-apparatus/ |archivedate=2013-05-24 |publisher=Denver Museum of Nature & Science }}</ref>{{update after|2020|4|14}}
| |
− |
| |
− | The original experiment remained in 2017 under the care of Miller and Urey's former student Jeffrey Bada, a professor at the UCSD, Scripps Institution of Oceanography. The apparatus used to conduct the experiment was on display at the Denver Museum of Nature and Science.
| |
| | | |
| 最初的实验在2017年由Miller和Urey以前的学生,加州大学圣地亚哥分校斯克里普斯海洋研究所教授杰弗里·巴达 Jeffrey Bada 负责<ref>{{cite news |url=https://www.nytimes.com/2010/05/18/science/18conv.html |title=A Conversation With Jeffrey L. Bada: A Marine Chemist Studies How Life Began |newspaper=nytimes.com |date=2010-05-17 |first=Claudia |last=Dreifus |authorlink=Claudia Dreifus |url-status=live |archiveurl=https://web.archive.org/web/20170118034218/http://www.nytimes.com/2010/05/18/science/18conv.html |archivedate=2017-01-18 }}</ref> {{asof|2013}}。那些实验仪器在丹佛自然科学博物馆存放展出<ref>{{cite news|url=http://www.dmns.org/science/museum-scientists/david-grinspoon/funky-science-wonder-lab/research-updates/astrobiology-collection-miller-urey-apparatus | title=Astrobiology Collection: Miller-Urey Apparatus |archiveurl=https://web.archive.org/web/20130524090309/http://www.dmns.org/science/museum-scientists/david-grinspoon/funky-science-wonder-lab/research-updates/astrobiology-collection-miller-urey-apparatus/ |archivedate=2013-05-24 |publisher=Denver Museum of Nature & Science }}</ref>{{update after|2020|4|14}}。 | | 最初的实验在2017年由Miller和Urey以前的学生,加州大学圣地亚哥分校斯克里普斯海洋研究所教授杰弗里·巴达 Jeffrey Bada 负责<ref>{{cite news |url=https://www.nytimes.com/2010/05/18/science/18conv.html |title=A Conversation With Jeffrey L. Bada: A Marine Chemist Studies How Life Began |newspaper=nytimes.com |date=2010-05-17 |first=Claudia |last=Dreifus |authorlink=Claudia Dreifus |url-status=live |archiveurl=https://web.archive.org/web/20170118034218/http://www.nytimes.com/2010/05/18/science/18conv.html |archivedate=2017-01-18 }}</ref> {{asof|2013}}。那些实验仪器在丹佛自然科学博物馆存放展出<ref>{{cite news|url=http://www.dmns.org/science/museum-scientists/david-grinspoon/funky-science-wonder-lab/research-updates/astrobiology-collection-miller-urey-apparatus | title=Astrobiology Collection: Miller-Urey Apparatus |archiveurl=https://web.archive.org/web/20130524090309/http://www.dmns.org/science/museum-scientists/david-grinspoon/funky-science-wonder-lab/research-updates/astrobiology-collection-miller-urey-apparatus/ |archivedate=2013-05-24 |publisher=Denver Museum of Nature & Science }}</ref>{{update after|2020|4|14}}。 |
| | | |
− | One-step reactions among the mixture components can produce [[hydrogen cyanide]] (HCN), [[formaldehyde]] (CH<sub>2</sub>O),<ref>https://www.webcitation.org/query?url=http://www.geocities.com/capecanaveral/lab/2948/orgel.html&date=2009-10-25+16:53:26 Origin of Life on Earth by Leslie E. Orgel</ref><ref>{{Cite book |url=http://books.nap.edu/openbook.php?record_id=11860&page=85 |title=Read "Exploring Organic Environments in the Solar System" at NAP.edu |accessdate=2008-10-25 |url-status=live |archiveurl=https://web.archive.org/web/20090621053626/http://books.nap.edu/openbook.php?record_id=11860&page=85 |archivedate=2009-06-21 |doi=10.17226/11860 |year=2007 |isbn=978-0-309-10235-3 |last1=Council |first1=National Research |last2=Studies |first2=Division on Earth Life |last3=Technology |first3=Board on Chemical Sciences and |last4=Sciences |first4=Division on Engineering Physical |last5=Board |first5=Space Studies |last6=System |first6=Task Group on Organic Environments in the Solar }} Exploring Organic Environments in the Solar System (2007)</ref> and other active intermediate compounds ([[acetylene]], [[cyanoacetylene]], etc.):{{Citation needed|date=June 2016}}
| |
− |
| |
− |
| |
− | One-step reactions among the mixture components can produce hydrogen cyanide (HCN), formaldehyde (CH<sub>2</sub>O), and other active intermediate compounds (acetylene, cyanoacetylene, etc.):
| |
| | | |
| 混合组分之间的一步反应可以生成'''氢化氢 hydrogen'''、'''甲醛 formaldehyde '''<ref>https://www.webcitation.org/query?url=http://www.geocities.com/capecanaveral/lab/2948/orgel.html&date=2009-10-25+16:53:26 Origin of Life on Earth by Leslie E. Orgel</ref><ref>{{Cite book |url=http://books.nap.edu/openbook.php?record_id=11860&page=85 |title=Read "Exploring Organic Environments in the Solar System" at NAP.edu |accessdate=2008-10-25 |url-status=live |archiveurl=https://web.archive.org/web/20090621053626/http://books.nap.edu/openbook.php?record_id=11860&page=85 |archivedate=2009-06-21 |doi=10.17226/11860 |year=2007 |isbn=978-0-309-10235-3 |last1=Council |first1=National Research |last2=Studies |first2=Division on Earth Life |last3=Technology |first3=Board on Chemical Sciences and |last4=Sciences |first4=Division on Engineering Physical |last5=Board |first5=Space Studies |last6=System |first6=Task Group on Organic Environments in the Solar }} Exploring Organic Environments in the Solar System (2007)</ref>和其他活性中间体('''乙炔 acetylene'''、'''氰乙炔 cyanoacetylene'''等) :{{Citation needed|date=June 2016}} | | 混合组分之间的一步反应可以生成'''氢化氢 hydrogen'''、'''甲醛 formaldehyde '''<ref>https://www.webcitation.org/query?url=http://www.geocities.com/capecanaveral/lab/2948/orgel.html&date=2009-10-25+16:53:26 Origin of Life on Earth by Leslie E. Orgel</ref><ref>{{Cite book |url=http://books.nap.edu/openbook.php?record_id=11860&page=85 |title=Read "Exploring Organic Environments in the Solar System" at NAP.edu |accessdate=2008-10-25 |url-status=live |archiveurl=https://web.archive.org/web/20090621053626/http://books.nap.edu/openbook.php?record_id=11860&page=85 |archivedate=2009-06-21 |doi=10.17226/11860 |year=2007 |isbn=978-0-309-10235-3 |last1=Council |first1=National Research |last2=Studies |first2=Division on Earth Life |last3=Technology |first3=Board on Chemical Sciences and |last4=Sciences |first4=Division on Engineering Physical |last5=Board |first5=Space Studies |last6=System |first6=Task Group on Organic Environments in the Solar }} Exploring Organic Environments in the Solar System (2007)</ref>和其他活性中间体('''乙炔 acetylene'''、'''氰乙炔 cyanoacetylene'''等) :{{Citation needed|date=June 2016}} |
| | | |
| | | |
− | ==Chemistry of experiment实验化学== | + | ==实验化学== |
| | | |
| | | |
第104行: |
第65行: |
| | | |
| : CH<sub>4</sub> + NH<sub>3</sub> → HCN + 3H<sub>2</sub> ([[BMA process]]) | | : CH<sub>4</sub> + NH<sub>3</sub> → HCN + 3H<sub>2</sub> ([[BMA process]]) |
− | The formaldehyde, ammonia, and HCN then react by [[Strecker synthesis]] to form amino acids and other biomolecules:
| |
− |
| |
− | The formaldehyde, ammonia, and HCN then react by Strecker synthesis to form amino acids and other biomolecules:
| |
| | | |
| 然后,甲醛、氨和 氰化氢 通过'''斯特雷克氨基酸合成法 Strecker synthesis'''生成氨基酸和其他生物分子: | | 然后,甲醛、氨和 氰化氢 通过'''斯特雷克氨基酸合成法 Strecker synthesis'''生成氨基酸和其他生物分子: |
第126行: |
第84行: |
| : NH<sub>2</sub>-CH<sub>2</sub>-CN + 2H<sub>2</sub>O → NH<sub>3</sub> + NH<sub>2</sub>-CH<sub>2</sub>-COOH ([[glycine]]) | | : NH<sub>2</sub>-CH<sub>2</sub>-CN + 2H<sub>2</sub>O → NH<sub>3</sub> + NH<sub>2</sub>-CH<sub>2</sub>-COOH ([[glycine]]) |
| | | |
− | Furthermore, water and formaldehyde can react, via Butlerov's reaction to produce various sugars like ribose.
| |
− | Furthermore, water and formaldehyde can react, via [[Formose reaction|Butlerov's reaction]] to produce various [[sugar]]s like [[ribose]].
| |
| | | |
| | | |
| 此外,水和甲醛可以反应,通过'''布特列罗夫反应 Butlerov’s reaction'''产生各种糖,如'''核糖 ribose '''。 | | 此外,水和甲醛可以反应,通过'''布特列罗夫反应 Butlerov’s reaction'''产生各种糖,如'''核糖 ribose '''。 |
| | | |
− |
| |
− | The experiments showed that simple organic compounds of building blocks of proteins and other macromolecules can be formed from gases with the addition of energy.
| |
− |
| |
− |
| |
− | The experiments showed that simple organic compounds of building blocks of proteins and other macromolecules can be formed from gases with the addition of energy.
| |
| | | |
| 实验表明,在添加能量的情况下可以生成构成'''蛋白质 proteins'''和其他'''大分子 macromolecules'''的简单有机化合物 。 | | 实验表明,在添加能量的情况下可以生成构成'''蛋白质 proteins'''和其他'''大分子 macromolecules'''的简单有机化合物 。 |
第142行: |
第93行: |
| | | |
| | | |
− | ==Other experiments其他实验== | + | ==其他实验== |
| | | |
− | Also, many amino acids are formed from HCN and ammonia under these conditions.
| |
| | | |
| 此外,许多氨基酸是由氰化氢和氨在这些条件下形成的。 | | 此外,许多氨基酸是由氰化氢和氨在这些条件下形成的。 |
| | | |
− | This experiment inspired many others. In 1961, [[Joan Oró]] found that the [[nucleotide]] base [[adenine]] could be made from [[hydrogen cyanide]] (HCN) and [[ammonia]] in a water solution. His experiment produced a large amount of adenine, the molecules of which were formed from 5 molecules of HCN.<ref>{{cite journal |vauthors=Oró J, Kimball AP |title=Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide |journal=Archives of Biochemistry and Biophysics |volume=94|issue=2 |pages=217–27 |date=August 1961 |pmid=13731263 |doi=10.1016/0003-9861(61)90033-9}}</ref>
| + | 这个实验启发了许多人。1961年,琼·奥雷奥 Joan Oró发现,在水溶液中氰化氢和氨可以合成核苷酸碱基腺嘌呤。他的实验产生了大量的腺嘌呤,其分子由5个氰化氢分子组成。<ref>{{cite journal |vauthors=Oró J, Kimball AP |title=Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide |journal=Archives of Biochemistry and Biophysics |volume=94|issue=2 |pages=217–27 |date=August 1961 |pmid=13731263 |doi=10.1016/0003-9861(61)90033-9}}</ref> |
− | This experiment inspired many others. In 1961, Joan Oró found that the nucleotide base adenine could be made from hydrogen cyanide (HCN) and ammonia in a water solution. His experiment produced a large amount of adenine, the molecules of which were formed from 5 molecules of HCN.
| |
− | | |
− | 这个实验启发了许多人。1961年,琼·奥雷奥 Joan Oró发现,在水溶液中氰化氢和氨可以合成核苷酸碱基腺嘌呤。他的实验产生了大量的腺嘌呤,其分子由5个氰化氢分子组成<ref>{{cite journal |vauthors=Oró J, Kimball AP |title=Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide |journal=Archives of Biochemistry and Biophysics |volume=94|issue=2 |pages=217–27 |date=August 1961 |pmid=13731263 |doi=10.1016/0003-9861(61)90033-9}}</ref> | |
− | 。
| |
− | | |
− | Experiments conducted later showed that the other [[Nucleobase|RNA and DNA nucleobases]] could be obtained through simulated prebiotic chemistry with a [[reducing atmosphere]].<ref>{{cite book | title=Origins of Prebiological Systems and of Their Molecular Matrices| editor= Fox SW| author=Oró J| year=1967| pages=137| publisher=New York Academic Press}}</ref>
| |
| | | |
| | | |
− | Experiments conducted later showed that the other RNA and DNA nucleobases could be obtained through simulated prebiotic chemistry with a reducing atmosphere.
| + | 后来进行的实验表明,其他 RNA 和 DNA 碱基可以在模拟还原气氛下的前生命化学中获得<ref>{{cite book | title=Origins of Prebiological Systems and of Their Molecular Matrices| editor= Fox SW| author=Oró J| year=1967| pages=137| publisher=New York Academic Press}}</ref>。 |
− | | |
− | 后来进行的实验表明,其他 RNA 和 DNA 碱基可以在模拟还原气氛下的前生命化学中获得<ref>{{cite book | title=Origins of Prebiological Systems and of Their Molecular Matrices| editor= Fox SW| author=Oró J| year=1967| pages=137| publisher=New York Academic Press}}</ref> | |
− | 。 | |
| | | |
− | Also, many amino acids are formed from HCN and ammonia under these conditions.<ref>{{cite journal |vauthors=Oró J, Kamat SS |title=Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions |journal=Nature |volume=190 |issue= 4774|pages=442–3 |date=April 1961 |pmid=13731262 |doi=10.1038/190442a0|bibcode = 1961Natur.190..442O |url=https://www.semanticscholar.org/paper/1aea2775f328d439e5bb65e61fdf3b988d829052 }}</ref>
| |
| 此外,在这些条件下氰化氢和氨形成了许多氨基酸。<ref>{{cite journal |vauthors=Oró J, Kamat SS |title=Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions |journal=Nature |volume=190 |issue= 4774|pages=442–3 |date=April 1961 |pmid=13731262 |doi=10.1038/190442a0|bibcode = 1961Natur.190..442O |url=https://www.semanticscholar.org/paper/1aea2775f328d439e5bb65e61fdf3b988d829052 }}</ref> | | 此外,在这些条件下氰化氢和氨形成了许多氨基酸。<ref>{{cite journal |vauthors=Oró J, Kamat SS |title=Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions |journal=Nature |volume=190 |issue= 4774|pages=442–3 |date=April 1961 |pmid=13731262 |doi=10.1038/190442a0|bibcode = 1961Natur.190..442O |url=https://www.semanticscholar.org/paper/1aea2775f328d439e5bb65e61fdf3b988d829052 }}</ref> |
− |
| |
− | There also had been similar electric discharge experiments related to the [[origin of life]] contemporaneous with Miller–Urey. An article in ''[[The New York Times]]'' (March 8, 1953:E9), titled "Looking Back Two Billion Years" describes the work of Wollman (William) M. MacNevin at [[The Ohio State University]], before the Miller ''Science'' paper was published in May 1953. MacNevin was passing 100,000 volt sparks through methane and water vapor and produced "resinous solids" that were "too complex for analysis." The article describes other early earth experiments being done by MacNevin. It is not clear if he ever published any of these results in the primary scientific literature.<ref>{{cite book | title=History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference | publisher=[[Springer-Verlag]] | author=Krehl, Peter O. K. | year=2009 | pages=603}}</ref><!--is it not clear because academics have researched this and somehow can't tell, or is it just not clear to the Wikipedia contributor from reading only the NYT article?-->
| |
− |
| |
| | | |
− | There also had been similar electric discharge experiments related to the origin of life contemporaneous with Miller–Urey. An article in The New York Times (March 8, 1953:E9), titled "Looking Back Two Billion Years" describes the work of Wollman (William) M. MacNevin at The Ohio State University, before the Miller Science paper was published in May 1953. MacNevin was passing 100,000 volt sparks through methane and water vapor and produced "resinous solids" that were "too complex for analysis." The article describes other early earth experiments being done by MacNevin. It is not clear if he ever published any of these results in the primary scientific literature.<!--is it not clear because academics have researched this and somehow can't tell, or is it just not clear to the Wikipedia contributor from reading only the NYT article?-->
| |
| | | |
| 在Miller-Urey的同时期也有过类似的与生命起源有关的放电实验。《纽约时报》(1953年3月8日:E9)上的一篇题为“回首20亿年”的文章描述了在1953年5月Miller发表论文之前的俄亥俄州立大学沃尔曼.M.麦克尼文 Wollman M.MacNevin的工作。MacNevin对甲烷和水蒸气施加10万伏特的火花,产生了“树脂固体”。而这些“树脂固体”过于复杂,无法分析。这篇文章还记录了MacNevin研究早期地球的其他实验。目前还不清楚他是否曾在初级科学文献中发表过这些结果<ref>{{cite book | title=History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference | publisher=[[Springer-Verlag]] | author=Krehl, Peter O. K. | year=2009 | pages=603}}</ref>。(不清楚是因为学者们已经对此进行了研究仍不知如何判断,还是因为维基百科的撰稿人只阅读了《纽约时报》?) | | 在Miller-Urey的同时期也有过类似的与生命起源有关的放电实验。《纽约时报》(1953年3月8日:E9)上的一篇题为“回首20亿年”的文章描述了在1953年5月Miller发表论文之前的俄亥俄州立大学沃尔曼.M.麦克尼文 Wollman M.MacNevin的工作。MacNevin对甲烷和水蒸气施加10万伏特的火花,产生了“树脂固体”。而这些“树脂固体”过于复杂,无法分析。这篇文章还记录了MacNevin研究早期地球的其他实验。目前还不清楚他是否曾在初级科学文献中发表过这些结果<ref>{{cite book | title=History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference | publisher=[[Springer-Verlag]] | author=Krehl, Peter O. K. | year=2009 | pages=603}}</ref>。(不清楚是因为学者们已经对此进行了研究仍不知如何判断,还是因为维基百科的撰稿人只阅读了《纽约时报》?) |
| | | |
| | | |
− | K. A. Wilde submitted a paper to ''Science'' on December 15, 1952, before Miller submitted his paper to the same journal on February 10, 1953. Wilde's paper was published on July 10, 1953.<ref>{{cite journal |last=Wilde |first=Kenneth A. |authorlink= |first2=Bruno J. |last2=Zwolinski |first3=Ransom B. |last3=Parlin |date=July 1953 |title=The Reaction Occurring in CO<sub>2</sub>, <sub>2</sub>O Mixtures in a High-Frequency Electric Arc |journal=[[Science (journal)|Science]] |volume=118 |issue=3054 |pages=43–44 |id= |doi=10.1126/science.118.3054.43-a |pmid=13076175 |bibcode=1953Sci...118...43W |df= }}</ref> Wilde used voltages up to only 600 V on a binary mixture of [[carbon dioxide]] (CO<sub>2</sub>) and water in a flow system. He observed only small amounts of carbon dioxide reduction to carbon monoxide, and no other significant reduction products or newly formed carbon compounds.
| |
− |
| |
− | K. A. Wilde submitted a paper to Science on December 15, 1952, before Miller submitted his paper to the same journal on February 10, 1953. Wilde's paper was published on July 10, 1953. Wilde used voltages up to only 600 V on a binary mixture of carbon dioxide (CO<sub>2</sub>) and water in a flow system. He observed only small amounts of carbon dioxide reduction to carbon monoxide, and no other significant reduction products or newly formed carbon compounds.
| |
| | | |
| 1952年12月15日K·A· 王尔德 K. A. Wilde向《科学》杂志提交了一篇论文,早于Miller于1953年2月10日向该杂志提交的论文<ref>{{cite journal |last=Wilde |first=Kenneth A. |authorlink= |first2=Bruno J. |last2=Zwolinski |first3=Ransom B. |last3=Parlin |date=July 1953 |title=The Reaction Occurring in CO<sub>2</sub>, <sub>2</sub>O Mixtures in a High-Frequency Electric Arc |journal=[[Science (journal)|Science]] |volume=118 |issue=3054 |pages=43–44 |id= |doi=10.1126/science.118.3054.43-a |pmid=13076175 |bibcode=1953Sci...118...43W |df= }}</ref> .Wilde的论文发表于1953年7月10日。Wilde将只有600v的电压施加于在流动系统中由'''二氧化碳 carbon dioxide'''(CO2)和水所形成的二元混合物。他观察到只有少量的二氧化碳减少为'''一氧化碳 carbon dioxide ''',没有其他重要的还原产物或新形成的碳化合物。 | | 1952年12月15日K·A· 王尔德 K. A. Wilde向《科学》杂志提交了一篇论文,早于Miller于1953年2月10日向该杂志提交的论文<ref>{{cite journal |last=Wilde |first=Kenneth A. |authorlink= |first2=Bruno J. |last2=Zwolinski |first3=Ransom B. |last3=Parlin |date=July 1953 |title=The Reaction Occurring in CO<sub>2</sub>, <sub>2</sub>O Mixtures in a High-Frequency Electric Arc |journal=[[Science (journal)|Science]] |volume=118 |issue=3054 |pages=43–44 |id= |doi=10.1126/science.118.3054.43-a |pmid=13076175 |bibcode=1953Sci...118...43W |df= }}</ref> .Wilde的论文发表于1953年7月10日。Wilde将只有600v的电压施加于在流动系统中由'''二氧化碳 carbon dioxide'''(CO2)和水所形成的二元混合物。他观察到只有少量的二氧化碳减少为'''一氧化碳 carbon dioxide ''',没有其他重要的还原产物或新形成的碳化合物。 |
| | | |
− |
| |
− | Other researchers were studying [[Ultraviolet|UV]]-[[photolysis]] of water vapor with [[carbon monoxide]]. They have found that various alcohols, aldehydes and organic acids were synthesized in reaction mixture.<ref>[https://doi.org/10.1007%2FBF00931407 Synthesis of organic compounds from carbon monoxide and water by UV photolysis] ''Origins of Life''. December 1978, Volume 9, Issue 2, pp 93-101 Akiva Bar-nun, Hyman Hartman.</ref>
| |
− |
| |
− |
| |
− | Other researchers were studying UV-photolysis of water vapor with carbon monoxide. They have found that various alcohols, aldehydes and organic acids were synthesized in reaction mixture.
| |
| | | |
| 其他研究人员正在研究水蒸气与一氧化碳的'''紫外光解反应 UV-photolysis'''。他们发现各种'''醇类 alcohols '''、'''醛类aldehydes '''和'''有机酸 organic acids '''都是在反应混合物中合成的<ref>[https://doi.org/10.1007%2FBF00931407 Synthesis of organic compounds from carbon monoxide and water by UV photolysis] ''Origins of Life''. December 1978, Volume 9, Issue 2, pp 93-101 Akiva Bar-nun, Hyman Hartman.</ref>。 | | 其他研究人员正在研究水蒸气与一氧化碳的'''紫外光解反应 UV-photolysis'''。他们发现各种'''醇类 alcohols '''、'''醛类aldehydes '''和'''有机酸 organic acids '''都是在反应混合物中合成的<ref>[https://doi.org/10.1007%2FBF00931407 Synthesis of organic compounds from carbon monoxide and water by UV photolysis] ''Origins of Life''. December 1978, Volume 9, Issue 2, pp 93-101 Akiva Bar-nun, Hyman Hartman.</ref>。 |
第189行: |
第117行: |
| | | |
| | | |
− | More recent experiments by chemists Jeffrey Bada, one of Miller's graduate students, and Jim Cleaves at [[Scripps Institution of Oceanography]] of the [[University of California, San Diego]] were similar to those performed by Miller. However, Bada noted that in current models of early Earth conditions, carbon dioxide and [[nitrogen]] (N<sub>2</sub>) create [[nitrite]]s, which destroy amino acids as fast as they form. <!--However, the early Earth may have had significant amounts of iron and [[carbonate minerals]] able to neutralize the effects of the nitrites.{{Citation needed|date=January 2016}} --> <!-- Please find a scientific paper that makes this statement before removing the tag -- and then the remark may be visible again --> When Bada performed the Miller-type experiment with the addition of iron and carbonate minerals, the products were rich in amino acids. This suggests the origin of significant amounts of amino acids may have occurred on Earth even with an atmosphere containing carbon dioxide and nitrogen.<ref name=Fox>{{Cite news |last=Fox |first=Douglas |date=2007-03-28 |title=Primordial Soup's On: Scientists Repeat Evolution's Most Famous Experiment |periodical=Scientific American |series=History of Science |publisher=Scientific American Inc. |url=http://www.sciam.com/article.cfm?id=primordial-soup-urey-miller-evolution-experiment-repeated |accessdate=2008-07-09 }}<br>{{Cite journal | last1 = Cleaves | first1 = H. J. | last2 = Chalmers | first2 = J. H. | last3 = Lazcano | first3 = A. | last4 = Miller | first4 = S. L. | last5 = Bada | first5 = J. L. | title = A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres | doi = 10.1007/s11084-007-9120-3 | journal = Origins of Life and Evolution of Biospheres | volume = 38 | issue = 2 | pages = 105–115 | year = 2008 | pmid = 18204914| bibcode = 2008OLEB...38..105C |url=http://www.astro.ulg.ac.be/~mouchet/BIOC0701-1/Cleaves-etal-2008.pdf |url-status=dead |archive-url=https://web.archive.org/web/20131107134729/http://www.astro.ulg.ac.be/~mouchet/BIOC0701-1/Cleaves-etal-2008.pdf |archive-date=2013-11-07 }}</ref>
| + | 米勒的研究生之一、化学家Jeffery Bade和加州大学圣地亚哥斯克里普斯海洋学研究所的吉姆·克里夫斯 Jim Cleaves最近的实验与Miller的实验相似。然而,Bade指出,在目前的地球早期条件模型中,二氧化碳和'''氮 nitrogen'''(N2)会产生'''亚硝酸盐 nitrites''',这会立即破坏氨基酸。<!--然而,早期地球可能有大量的铁和碳酸盐矿物能够中和亚硝酸盐的影响。--> <!--在去掉标签之前,请先找到一篇科学论文来说明这一点——然后这句话可能会再次显现出来-->当Bade进行Miller式实验时,他添加了铁和碳酸盐矿物,制作出的产品富含氨基酸。这表明,即使是含有二氧化碳和氮气的大气中,也可能成为大量氨基酸的起源之处<ref name=Fox>{{Cite news |last=Fox |first=Douglas |date=2007-03-28 |title=Primordial Soup's On: Scientists Repeat Evolution's Most Famous Experiment |periodical=Scientific American |series=History of Science |publisher=Scientific American Inc. |url=http://www.sciam.com/article.cfm?id=primordial-soup-urey-miller-evolution-experiment-repeated |accessdate=2008-07-09 }}<br>{{Cite journal | last1 = Cleaves | first1 = H. J. | last2 = Chalmers | first2 = J. H. | last3 = Lazcano | first3 = A. | last4 = Miller | first4 = S. L. | last5 = Bada | first5 = J. L. | title = A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres | doi = 10.1007/s11084-007-9120-3 | journal = Origins of Life and Evolution of Biospheres | volume = 38 | issue = 2 | pages = 105–115 | year = 2008 | pmid = 18204914| bibcode = 2008OLEB...38..105C |url=http://www.astro.ulg.ac.be/~mouchet/BIOC0701-1/Cleaves-etal-2008.pdf |url-status=dead |archive-url=https://web.archive.org/web/20131107134729/http://www.astro.ulg.ac.be/~mouchet/BIOC0701-1/Cleaves-etal-2008.pdf |archive-date=2013-11-07 }}</ref>。 |
− | | |
− | More recent experiments by chemists Jeffrey Bada, one of Miller's graduate students, and Jim Cleaves at Scripps Institution of Oceanography of the University of California, San Diego were similar to those performed by Miller. However, Bada noted that in current models of early Earth conditions, carbon dioxide and nitrogen (N<sub>2</sub>) create nitrites, which destroy amino acids as fast as they form. <!--However, the early Earth may have had significant amounts of iron and carbonate minerals able to neutralize the effects of the nitrites. --> <!-- Please find a scientific paper that makes this statement before removing the tag -- and then the remark may be visible again --> When Bada performed the Miller-type experiment with the addition of iron and carbonate minerals, the products were rich in amino acids. This suggests the origin of significant amounts of amino acids may have occurred on Earth even with an atmosphere containing carbon dioxide and nitrogen.
| |
− | | |
− | 米勒的研究生之一、化学家Jeffery Bade和加州大学圣地亚哥斯克里普斯海洋学研究所的吉姆·克里夫斯 Jim Cleaves最近的实验与Miller的实验相似。然而,Bade指出,在目前的地球早期条件模型中,二氧化碳和'''氮 nitrogen'''(N2)会产生'''亚硝酸盐 nitrites''',这会立即破坏氨基酸。<!--然而,早期地球可能有大量的铁和碳酸盐矿物能够中和亚硝酸盐的影响。--> <!--在去掉标签之前,请先找到一篇科学论文来说明这一点——然后这句话可能会再次显现出来-->当Bade进行Miller式实验时,他添加了铁和碳酸盐矿物,制作出的产品富含氨基酸。这表明,即使是含有二氧化碳和氮气的大气中,也可能成为大量氨基酸的起源之处<ref name=Fox>{{Cite news |last=Fox |first=Douglas |date=2007-03-28 |title=Primordial Soup's On: Scientists Repeat Evolution's Most Famous Experiment |periodical=Scientific American |series=History of Science |publisher=Scientific American Inc. |url=http://www.sciam.com/article.cfm?id=primordial-soup-urey-miller-evolution-experiment-repeated |accessdate=2008-07-09 }}<br>{{Cite journal | last1 = Cleaves | first1 = H. J. | last2 = Chalmers | first2 = J. H. | last3 = Lazcano | first3 = A. | last4 = Miller | first4 = S. L. | last5 = Bada | first5 = J. L. | title = A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres | doi = 10.1007/s11084-007-9120-3 | journal = Origins of Life and Evolution of Biospheres | volume = 38 | issue = 2 | pages = 105–115 | year = 2008 | pmid = 18204914| bibcode = 2008OLEB...38..105C |url=http://www.astro.ulg.ac.be/~mouchet/BIOC0701-1/Cleaves-etal-2008.pdf |url-status=dead |archive-url=https://web.archive.org/web/20131107134729/http://www.astro.ulg.ac.be/~mouchet/BIOC0701-1/Cleaves-etal-2008.pdf |archive-date=2013-11-07 }}</ref> | |
− | 。 | |
| | | |
− | Some evidence suggests that Earth's original atmosphere might have contained fewer of the reducing molecules than was thought at the time of the Miller–Urey experiment. There is abundant evidence of major volcanic eruptions 4 billion years ago, which would have released carbon dioxide, nitrogen, [[hydrogen sulfide]] (H<sub>2</sub>S), and [[sulfur dioxide]] (SO<sub>2</sub>) into the atmosphere.<ref name=Green>{{Cite journal|last=Green|first=Jack|title=Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife|journal=International Journal of Molecular Sciences|year=2011|volume=12|issue=9|pages=6051–6076|doi=10.3390/ijms12096051|pmid=22016644|pmc=3189768|ref=harv}}</ref> Experiments using these gases in addition to the ones in the original Miller–Urey experiment have produced more diverse molecules. The experiment created a mixture that was racemic (containing both L and D [[enantiomer]]s) and experiments since have shown that "in the lab the two versions are equally likely to appear";<ref name="NS">{{Cite news |date=2006-06-02 |title=Right-handed amino acids were left behind |periodical=[[New Scientist]] |publisher=Reed Business Information Ltd |issue=2554 |pages=18 |url=https://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |accessdate=2008-07-09 |url-status=live |archiveurl=https://web.archive.org/web/20081024211531/http://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |archivedate=2008-10-24 }}</ref> however, in nature, L amino acids dominate. Later experiments have confirmed disproportionate amounts of L or D oriented enantiomers are possible.<ref>{{cite journal |last=Kojo |first=Shosuke |first2=Hiromi |last2=Uchino |first3=Mayu |last3=Yoshimura |first4=Kyoko |last4=Tanaka |date=October 2004 |title=Racemic D,L-asparagine causes enantio meric excess of other coexisting racemic D,L-amino acids during recrystallization: a hypothesis accounting for the origin of L-amino acids in the biosphere |journal=Chemical Communications |volume= |issue=19 |pages=2146–2147 |pmid=15467844 |doi=10.1039/b409941a}}</ref>
| |
− |
| |
− |
| |
− | Some evidence suggests that Earth's original atmosphere might have contained fewer of the reducing molecules than was thought at the time of the Miller–Urey experiment. There is abundant evidence of major volcanic eruptions 4 billion years ago, which would have released carbon dioxide, nitrogen, hydrogen sulfide (H<sub>2</sub>S), and sulfur dioxide (SO<sub>2</sub>) into the atmosphere. Experiments using these gases in addition to the ones in the original Miller–Urey experiment have produced more diverse molecules. The experiment created a mixture that was racemic (containing both L and D enantiomers) and experiments since have shown that "in the lab the two versions are equally likely to appear"; however, in nature, L amino acids dominate. Later experiments have confirmed disproportionate amounts of L or D oriented enantiomers are possible.
| |
| | | |
| 一些证据表明,地球原始大气层中还原分子的含量可能比Miller-Urey实验时所认为的要少。有大量的证据表明,40亿年前的大型火山爆发会向大气中释放二氧化碳、氮、'''硫化氢 hydrogen sulfide'''(H2S)和'''二氧化硫 sulfur dioxide '''(SO2) <ref name=Green>{{Cite journal|last=Green|first=Jack|title=Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife|journal=International Journal of Molecular Sciences|year=2011|volume=12|issue=9|pages=6051–6076|doi=10.3390/ijms12096051|pmid=22016644|pmc=3189768|ref=harv}}</ref>。除了最初的Miller-Urey实验中使用的气体之外,进一步使用这些气体的实验产生了更多样化的分子。该实验创造了一种外消旋体(包含L和D对映异构体)的混合物。此后的实验表明,“在实验室中,这两种化合物出现的可能性相等” <ref name="NS">{{Cite news |date=2006-06-02 |title=Right-handed amino acids were left behind |periodical=[[New Scientist]] |publisher=Reed Business Information Ltd |issue=2554 |pages=18 |url=https://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |accessdate=2008-07-09 |url-status=live |archiveurl=https://web.archive.org/web/20081024211531/http://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |archivedate=2008-10-24 }}</ref> ; 然而,在自然界中,L氨基酸占主导地位。后来的实验证实了不成比例的L或D取向对映异构体是可能的<ref>{{cite journal |last=Kojo |first=Shosuke |first2=Hiromi |last2=Uchino |first3=Mayu |last3=Yoshimura |first4=Kyoko |last4=Tanaka |date=October 2004 |title=Racemic D,L-asparagine causes enantiomeric excess of other coexisting racemic D,L-amino acids during recrystallization: a hypothesis accounting for the origin of L-amino acids in the biosphere |journal=Chemical Communications |volume= |issue=19 |pages=2146–2147 |pmid=15467844 |doi=10.1039/b409941a}}</ref> | | 一些证据表明,地球原始大气层中还原分子的含量可能比Miller-Urey实验时所认为的要少。有大量的证据表明,40亿年前的大型火山爆发会向大气中释放二氧化碳、氮、'''硫化氢 hydrogen sulfide'''(H2S)和'''二氧化硫 sulfur dioxide '''(SO2) <ref name=Green>{{Cite journal|last=Green|first=Jack|title=Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife|journal=International Journal of Molecular Sciences|year=2011|volume=12|issue=9|pages=6051–6076|doi=10.3390/ijms12096051|pmid=22016644|pmc=3189768|ref=harv}}</ref>。除了最初的Miller-Urey实验中使用的气体之外,进一步使用这些气体的实验产生了更多样化的分子。该实验创造了一种外消旋体(包含L和D对映异构体)的混合物。此后的实验表明,“在实验室中,这两种化合物出现的可能性相等” <ref name="NS">{{Cite news |date=2006-06-02 |title=Right-handed amino acids were left behind |periodical=[[New Scientist]] |publisher=Reed Business Information Ltd |issue=2554 |pages=18 |url=https://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |accessdate=2008-07-09 |url-status=live |archiveurl=https://web.archive.org/web/20081024211531/http://www.newscientist.com/channel/life/mg19025545.200-righthanded-amino-acids-were-left-behind.html |archivedate=2008-10-24 }}</ref> ; 然而,在自然界中,L氨基酸占主导地位。后来的实验证实了不成比例的L或D取向对映异构体是可能的<ref>{{cite journal |last=Kojo |first=Shosuke |first2=Hiromi |last2=Uchino |first3=Mayu |last3=Yoshimura |first4=Kyoko |last4=Tanaka |date=October 2004 |title=Racemic D,L-asparagine causes enantiomeric excess of other coexisting racemic D,L-amino acids during recrystallization: a hypothesis accounting for the origin of L-amino acids in the biosphere |journal=Chemical Communications |volume= |issue=19 |pages=2146–2147 |pmid=15467844 |doi=10.1039/b409941a}}</ref> |
第206行: |
第125行: |
| | | |
| | | |
− | ==Earth's early atmosphere地球早期的大气层== | + | ==地球早期的大气层== |
− | | |
− | Originally it was thought that the primitive [[secondary atmosphere]] contained mostly ammonia and methane. However, it is likely that most of the atmospheric carbon was CO<sub>2</sub> with perhaps some CO and the nitrogen mostly N<sub>2</sub>. In practice gas mixtures containing CO, CO<sub>2</sub>, N<sub>2</sub>, etc. give much the same products as those containing CH<sub>4</sub> and NH<sub>3</sub> so long as there is no O<sub>2</sub>. The hydrogen atoms come mostly from water vapor. In fact, in order to generate aromatic amino acids under primitive earth conditions it is necessary to use less hydrogen-rich gaseous mixtures. Most of the natural amino acids, [[hydroxy acid|hydroxyacids]], purines, pyrimidines, and sugars have been made in variants of the Miller experiment.<ref name=bada2013/><ref>{{cite journal|last1=Ruiz-Mirazo|first1=Kepa|last2=Briones|first2=Carlos|last3=de la Escosura|first3=Andrés|title=Prebiotic Systems Chemistry: New Perspectives for the Origins of Life|journal=Chemical Reviews|year=2014|volume=114|issue=1|pages=285–366|doi=10.1021/cr2004844|pmid=24171674}}</ref>
| |
− | | |
− | Originally it was thought that the primitive secondary atmosphere contained mostly ammonia and methane. However, it is likely that most of the atmospheric carbon was CO<sub>2</sub> with perhaps some CO and the nitrogen mostly N<sub>2</sub>. In practice gas mixtures containing CO, CO<sub>2</sub>, N<sub>2</sub>, etc. give much the same products as those containing CH<sub>4</sub> and NH<sub>3</sub> so long as there is no O<sub>2</sub>. The hydrogen atoms come mostly from water vapor. In fact, in order to generate aromatic amino acids under primitive earth conditions it is necessary to use less hydrogen-rich gaseous mixtures. Most of the natural amino acids, hydroxyacids, purines, pyrimidines, and sugars have been made in variants of the Miller experiment.
| |
| | | |
| 起初人们认为,原始次生大气主要含有氨和甲烷。然而,大气中的大部分碳可能是二氧化碳 ,一些一氧化碳和氮——大部分是氮气。在实际应用中,含有一氧化碳,二氧化碳和氮气等的混合气体在没有'''氧气 oxygen '''的条件下可以给出与含甲烷和氨气的混合气体制造出的产品相一致的产物。氢原子主要来自水蒸气。事实上,为了在原始地球条件下生成'''芳香族氨基酸 aromatic ''',必须使用较少的富氢气体混合物。大多数天然氨基酸、'''羟基酸 hydroxyacids''''''嘌呤 purines '''、'''嘧啶 pyrimidines '''和糖都在Miller实验的变体中生成<ref name=bada2013/><ref>{{cite journal|last1=Ruiz-Mirazo|first1=Kepa|last2=Briones|first2=Carlos|last3=de la Escosura|first3=Andrés|title=Prebiotic Systems Chemistry: New Perspectives for the Origins of Life|journal=Chemical Reviews|year=2014|volume=114|issue=1|pages=285–366|doi=10.1021/cr2004844|pmid=24171674}}</ref> | | 起初人们认为,原始次生大气主要含有氨和甲烷。然而,大气中的大部分碳可能是二氧化碳 ,一些一氧化碳和氮——大部分是氮气。在实际应用中,含有一氧化碳,二氧化碳和氮气等的混合气体在没有'''氧气 oxygen '''的条件下可以给出与含甲烷和氨气的混合气体制造出的产品相一致的产物。氢原子主要来自水蒸气。事实上,为了在原始地球条件下生成'''芳香族氨基酸 aromatic ''',必须使用较少的富氢气体混合物。大多数天然氨基酸、'''羟基酸 hydroxyacids''''''嘌呤 purines '''、'''嘧啶 pyrimidines '''和糖都在Miller实验的变体中生成<ref name=bada2013/><ref>{{cite journal|last1=Ruiz-Mirazo|first1=Kepa|last2=Briones|first2=Carlos|last3=de la Escosura|first3=Andrés|title=Prebiotic Systems Chemistry: New Perspectives for the Origins of Life|journal=Chemical Reviews|year=2014|volume=114|issue=1|pages=285–366|doi=10.1021/cr2004844|pmid=24171674}}</ref> |
| 。 | | 。 |
| | | |
− | More recent results may question these conclusions. The University of Waterloo and University of Colorado conducted simulations in 2005 that indicated that the early atmosphere of Earth could have contained up to 40 percent hydrogen—implying a much more hospitable environment for the formation of prebiotic organic molecules. The escape of hydrogen from Earth's atmosphere into space may have occurred at only one percent of the rate previously believed based on revised estimates of the upper atmosphere's temperature.<ref>{{cite web |url=http://newsrelease.uwaterloo.ca/news.php?id=4348 |accessdate=2005-12-17 |title=Early Earth atmosphere favorable to life: study |publisher=University of Waterloo |url-status=dead |archiveurl=https://web.archive.org/web/20051214230357/http://newsrelease.uwaterloo.ca/news.php?id=4348 |archivedate=2005-12-14 }}</ref> One of the authors, Owen Toon notes: "In this new scenario, organics can be produced efficiently in the early atmosphere, leading us back to the organic-rich soup-in-the-ocean concept... I think this study makes the experiments by Miller and others relevant again." Outgassing calculations using a chondritic model for the early earth complement the Waterloo/Colorado results in re-establishing the importance of the Miller–Urey experiment.<ref>{{cite web |url=http://news-info.wustl.edu/news/page/normal/5513.html |accessdate=2005-12-17 |title=Calculations favor reducing atmosphere for early earth – Was Miller–Urey experiment correct? |first=Tony |last=Fitzpatrick |publisher=Washington University in St. Louis |year=2005 |url-status=dead |archiveurl=https://web.archive.org/web/20080720174657/http://news-info.wustl.edu/news/page/normal/5513.html |archivedate=2008-07-20 }}</ref>
| |
− |
| |
− |
| |
− | More recent results may question these conclusions. The University of Waterloo and University of Colorado conducted simulations in 2005 that indicated that the early atmosphere of Earth could have contained up to 40 percent hydrogen—implying a much more hospitable environment for the formation of prebiotic organic molecules. The escape of hydrogen from Earth's atmosphere into space may have occurred at only one percent of the rate previously believed based on revised estimates of the upper atmosphere's temperature. One of the authors, Owen Toon notes: "In this new scenario, organics can be produced efficiently in the early atmosphere, leading us back to the organic-rich soup-in-the-ocean concept... I think this study makes the experiments by Miller and others relevant again." Outgassing calculations using a chondritic model for the early earth complement the Waterloo/Colorado results in re-establishing the importance of the Miller–Urey experiment.
| |
| | | |
| 最近的研究结果可能会质疑这些结论。滑铁卢大学和科罗拉多大学在2005年进行了模拟,结果表明地球早期大气中可能含有高达40%的氢,这是一个有利于形成益生元有机分子的环境。氢从地球大气层逃逸到太空的速度可能只有先前依据高层大气温度的修正估计值所得出的速率的百分之一<ref>{{cite web |url=http://newsrelease.uwaterloo.ca/news.php?id=4348 |accessdate=2005-12-17 |title=Early Earth atmosphere favorable to life: study |publisher=University of Waterloo |url-status=dead |archiveurl=https://web.archive.org/web/20051214230357/http://newsrelease.uwaterloo.ca/news.php?id=4348 |archivedate=2005-12-14 }}</ref>。作者之一欧文·图恩 Owen Toon指出:“在这个新的设想中,有机物可以在早期大气中高效地生成.这让我们回到海洋是一个富含有机物的汤池这一概念…我认为这项研究使米勒的实验与其他人的实验再次产生相关性。“利用早期地球的球粒陨石模型进行释气计算,这补充了滑铁卢/科罗拉多的结果,重新确立了米勒尤里实验的重要性<ref>{{cite web |url=http://news-info.wustl.edu/news/page/normal/5513.html |accessdate=2005-12-17 |title=Calculations favor reducing atmosphere for early earth – Was Miller–Urey experiment correct? |first=Tony |last=Fitzpatrick |publisher=Washington University in St. Louis |year=2005 |url-status=dead |archiveurl=https://web.archive.org/web/20080720174657/http://news-info.wustl.edu/news/page/normal/5513.html |archivedate=2008-07-20 }}</ref> | | 最近的研究结果可能会质疑这些结论。滑铁卢大学和科罗拉多大学在2005年进行了模拟,结果表明地球早期大气中可能含有高达40%的氢,这是一个有利于形成益生元有机分子的环境。氢从地球大气层逃逸到太空的速度可能只有先前依据高层大气温度的修正估计值所得出的速率的百分之一<ref>{{cite web |url=http://newsrelease.uwaterloo.ca/news.php?id=4348 |accessdate=2005-12-17 |title=Early Earth atmosphere favorable to life: study |publisher=University of Waterloo |url-status=dead |archiveurl=https://web.archive.org/web/20051214230357/http://newsrelease.uwaterloo.ca/news.php?id=4348 |archivedate=2005-12-14 }}</ref>。作者之一欧文·图恩 Owen Toon指出:“在这个新的设想中,有机物可以在早期大气中高效地生成.这让我们回到海洋是一个富含有机物的汤池这一概念…我认为这项研究使米勒的实验与其他人的实验再次产生相关性。“利用早期地球的球粒陨石模型进行释气计算,这补充了滑铁卢/科罗拉多的结果,重新确立了米勒尤里实验的重要性<ref>{{cite web |url=http://news-info.wustl.edu/news/page/normal/5513.html |accessdate=2005-12-17 |title=Calculations favor reducing atmosphere for early earth – Was Miller–Urey experiment correct? |first=Tony |last=Fitzpatrick |publisher=Washington University in St. Louis |year=2005 |url-status=dead |archiveurl=https://web.archive.org/web/20080720174657/http://news-info.wustl.edu/news/page/normal/5513.html |archivedate=2008-07-20 }}</ref> |
| | | |
| | | |
− | In contrast to the general notion of early earth's reducing atmosphere, researchers at the [[Rensselaer Polytechnic Institute]] in New York reported the possibility of oxygen available around 4.3 billion years ago. Their study reported in 2011 on the assessment of Hadean [[zircons]] from the earth's interior ([[magma]]) indicated the presence of oxygen traces similar to modern-day lavas.<ref>{{cite journal|last1=Trail|first1=Dustin|last2=Watson|first2=E. Bruce|last3=Tailby|first3=Nicholas D.|title=The oxidation state of Hadean magmas and implications for early Earth's atmosphere|journal=Nature|year=2011|volume=480|issue=7375|pages=79–82|doi=10.1038/nature10655|pmid=22129728|bibcode=2011Natur.480...79T|url=https://www.semanticscholar.org/paper/e87ff5db353f56ac40649b2a4ca618f3c2067cdb}}</ref> This study suggests that oxygen could have been released in the earth's atmosphere earlier than generally believed.<ref>{{cite journal|last1=Scaillet|first1=Bruno|last2=Gaillard|first2=Fabrice|title=Earth science: Redox state of early magmas|journal=Nature|date=2011|volume=480|issue=7375|pages=48–49|doi=10.1038/480048a|pmid=22129723|bibcode=2011Natur.480...48S|url=https://hal.archives-ouvertes.fr/file/index/docid/648930/filename/Scaillet-Nature2-2011.pdf|url-status=live|archiveurl=https://web.archive.org/web/20171026110646/https://hal.archives-ouvertes.fr/file/index/docid/648930/filename/Scaillet-Nature2-2011.pdf|archivedate=2017-10-26|citeseerx=10.1.1.659.2086}}</ref>
| |
− |
| |
− | In contrast to the general notion of early earth's reducing atmosphere, researchers at the Rensselaer Polytechnic Institute in New York reported the possibility of oxygen available around 4.3 billion years ago. Their study reported in 2011 on the assessment of Hadean zircons from the earth's interior (magma) indicated the presence of oxygen traces similar to modern-day lavas. This study suggests that oxygen could have been released in the earth's atmosphere earlier than generally believed.
| |
| | | |
| 与早期地球有着还原性大气层的普遍观点不同,纽约伦斯勒理工学院的研究人员报告了43亿年前氧气存在的可能性。他们在2011年发布了基于对来自地球内部(岩浆)的哈迪恩锆石的评估的研究。指出锆石上存在着类似于现代熔岩中也具有的氧气痕迹<ref>{{cite journal|last1=Trail|first1=Dustin|last2=Watson|first2=E. Bruce|last3=Tailby|first3=Nicholas D.|title=The oxidation state of Hadean magmas and implications for early Earth's atmosphere|journal=Nature|year=2011|volume=480|issue=7375|pages=79–82|doi=10.1038/nature10655|pmid=22129728|bibcode=2011Natur.480...79T|url=https://www.semanticscholar.org/paper/e87ff5db353f56ac40649b2a4ca618f3c2067cdb}}</ref>。这项研究表明,氧气出现在地球大气中的时间可能比人们通常认为的还要早<ref>{{cite journal|last1=Scaillet|first1=Bruno|last2=Gaillard|first2=Fabrice|title=Earth science: Redox state of early magmas|journal=Nature|date=2011|volume=480|issue=7375|pages=48–49|doi=10.1038/480048a|pmid=22129723|bibcode=2011Natur.480...48S|url=https://hal.archives-ouvertes.fr/file/index/docid/648930/filename/Scaillet-Nature2-2011.pdf|url-status=live|archiveurl=https://web.archive.org/web/20171026110646/https://hal.archives-ouvertes.fr/file/index/docid/648930/filename/Scaillet-Nature2-2011.pdf|archivedate=2017-10-26|citeseerx=10.1.1.659.2086}}</ref> | | 与早期地球有着还原性大气层的普遍观点不同,纽约伦斯勒理工学院的研究人员报告了43亿年前氧气存在的可能性。他们在2011年发布了基于对来自地球内部(岩浆)的哈迪恩锆石的评估的研究。指出锆石上存在着类似于现代熔岩中也具有的氧气痕迹<ref>{{cite journal|last1=Trail|first1=Dustin|last2=Watson|first2=E. Bruce|last3=Tailby|first3=Nicholas D.|title=The oxidation state of Hadean magmas and implications for early Earth's atmosphere|journal=Nature|year=2011|volume=480|issue=7375|pages=79–82|doi=10.1038/nature10655|pmid=22129728|bibcode=2011Natur.480...79T|url=https://www.semanticscholar.org/paper/e87ff5db353f56ac40649b2a4ca618f3c2067cdb}}</ref>。这项研究表明,氧气出现在地球大气中的时间可能比人们通常认为的还要早<ref>{{cite journal|last1=Scaillet|first1=Bruno|last2=Gaillard|first2=Fabrice|title=Earth science: Redox state of early magmas|journal=Nature|date=2011|volume=480|issue=7375|pages=48–49|doi=10.1038/480048a|pmid=22129723|bibcode=2011Natur.480...48S|url=https://hal.archives-ouvertes.fr/file/index/docid/648930/filename/Scaillet-Nature2-2011.pdf|url-status=live|archiveurl=https://web.archive.org/web/20171026110646/https://hal.archives-ouvertes.fr/file/index/docid/648930/filename/Scaillet-Nature2-2011.pdf|archivedate=2017-10-26|citeseerx=10.1.1.659.2086}}</ref> |
| 。 | | 。 |
| | | |
− | ==Extraterrestrial sources外星源== | + | ==外星源== |
− | | |
− | Conditions similar to those of the Miller–Urey experiments are present in other regions of the [[solar system]], often substituting [[ultraviolet]] light for lightning as the energy source for chemical reactions.<ref>{{cite journal|last1=Nunn|first1=JF|title=Evolution of the atmosphere|journal=Proceedings of the Geologists' Association. Geologists' Association|year=1998|volume=109|issue=1|pages=1–13|pmid=11543127|doi=10.1016/s0016-7878(98)80001-1}}</ref><ref>{{cite journal|last1=Raulin|first1=F|last2=Bossard|first2=A|title=Organic syntheses in gas phase and chemical evolution in planetary atmospheres.|journal=Advances in Space Research|year=1984|volume=4|issue=12|pages=75–82|pmid=11537798|doi=10.1016/0273-1177(84)90547-7|bibcode=1984AdSpR...4...75R}}</ref><ref>{{cite journal|last1=Raulin|first1=François|last2=Brassé|first2=Coralie|last3=Poch|first3=Olivier|last4=Coll|first4=Patrice|title=Prebiotic-like chemistry on Titan|journal= Chemical Society Reviews|year=2012|volume=41|issue=16|pages=5380–93|doi=10.1039/c2cs35014a|pmid=22481630}}</ref> The [[Murchison meteorite]] that fell near [[Murchison, Victoria]], Australia in 1969 was found to contain over 90 different amino acids, nineteen of which are found in Earth life. [[Comet]]s and other [[Trans-Neptunian object|icy outer-solar-system bodies]] are thought to contain large amounts of complex carbon compounds (such as [[tholin]]s) formed by these processes, darkening surfaces of these bodies.<ref>{{cite journal |vauthors=Thompson WR, Murray BG, Khare BN, Sagan C |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system |journal=Journal of Geophysical Research |volume=92 |issue=A13 |pages=14933–47 |date=December 1987 |pmid=11542127 |doi=10.1029/JA092iA13p14933 |bibcode=1987JGR....9214933T|title-link=methane clathrate }}</ref> The early Earth was bombarded heavily by comets, possibly providing a large supply of complex organic molecules along with the water and other volatiles they contributed.<ref>{{cite journal|last=PIERAZZO|first=E.|author2=CHYBA C.F.|title=Amino acid survival in large cometary impacts|journal=Meteoritics & Planetary Science|year=2010|volume=34|issue=6|pages=909–918|doi=10.1111/j.1945-5100.1999.tb01409.x|bibcode=1999M&PS...34..909P}}</ref> This has been used to infer an origin of life outside of Earth: the [[panspermia]] hypothesis.
| |
− | | |
− | Conditions similar to those of the Miller–Urey experiments are present in other regions of the solar system, often substituting ultraviolet light for lightning as the energy source for chemical reactions. The Murchison meteorite that fell near Murchison, Victoria, Australia in 1969 was found to contain over 90 different amino acids, nineteen of which are found in Earth life. Comets and other icy outer-solar-system bodies are thought to contain large amounts of complex carbon compounds (such as tholins) formed by these processes, darkening surfaces of these bodies. The early Earth was bombarded heavily by comets, possibly providing a large supply of complex organic molecules along with the water and other volatiles they contributed. This has been used to infer an origin of life outside of Earth: the panspermia hypothesis.
| |
| | | |
| 类似Miller-Urey实验条件的环境在太阳系的其他区域也存在——不过通常以紫外线代替闪电作为化学反应的能源<ref>{{cite journal|last1=Nunn|first1=JF|title=Evolution of the atmosphere|journal=Proceedings of the Geologists' Association. Geologists' Association|year=1998|volume=109|issue=1|pages=1–13|pmid=11543127|doi=10.1016/s0016-7878(98)80001-1}}</ref><ref>{{cite journal|last1=Raulin|first1=F|last2=Bossard|first2=A|title=Organic syntheses in gas phase and chemical evolution in planetary atmospheres.|journal=Advances in Space Research|year=1984|volume=4|issue=12|pages=75–82|pmid=11537798|doi=10.1016/0273-1177(84)90547-7|bibcode=1984AdSpR...4...75R}}</ref><ref>{{cite journal|last1=Raulin|first1=François|last2=Brassé|first2=Coralie|last3=Poch|first3=Olivier|last4=Coll|first4=Patrice|title=Prebiotic-like chemistry on Titan|journal= Chemical Society Reviews|year=2012|volume=41|issue=16|pages=5380–93|doi=10.1039/c2cs35014a|pmid=22481630}}</ref>。1969年落在澳大利亚维多利亚州默奇森河附近的默奇森陨石被发现含有超过90种不同的氨基酸,其中十九种存在于地球生命中。彗星和其他太阳系外围的冰冷天体被认为含有大量复杂的碳化合物(例如'''塞林 tholins ''') ,在天体的暗化表面经由这些步骤形成<ref>{{cite journal |vauthors=Thompson WR, Murray BG, Khare BN, Sagan C |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system |journal=Journal of Geophysical Research |volume=92 |issue=A13 |pages=14933–47 |date=December 1987 |pmid=11542127 |doi=10.1029/JA092iA13p14933 |bibcode=1987JGR....9214933T|title-link=methane clathrate }}</ref>。早期的地球遭受了严重的彗星撞击,产生了大量复杂的有机分子以及水和其他挥发物<ref>{{cite journal|last=PIERAZZO|first=E.|author2=CHYBA C.F.|title=Amino acid survival in large cometary impacts|journal=Meteoritics & Planetary Science|year=2010|volume=34|issue=6|pages=909–918|doi=10.1111/j.1945-5100.1999.tb01409.x|bibcode=1999M&PS...34..909P}}</ref>。这被用来推断地球以外生命的起源: '''胚种论 the panspermia hypothesis | | 类似Miller-Urey实验条件的环境在太阳系的其他区域也存在——不过通常以紫外线代替闪电作为化学反应的能源<ref>{{cite journal|last1=Nunn|first1=JF|title=Evolution of the atmosphere|journal=Proceedings of the Geologists' Association. Geologists' Association|year=1998|volume=109|issue=1|pages=1–13|pmid=11543127|doi=10.1016/s0016-7878(98)80001-1}}</ref><ref>{{cite journal|last1=Raulin|first1=F|last2=Bossard|first2=A|title=Organic syntheses in gas phase and chemical evolution in planetary atmospheres.|journal=Advances in Space Research|year=1984|volume=4|issue=12|pages=75–82|pmid=11537798|doi=10.1016/0273-1177(84)90547-7|bibcode=1984AdSpR...4...75R}}</ref><ref>{{cite journal|last1=Raulin|first1=François|last2=Brassé|first2=Coralie|last3=Poch|first3=Olivier|last4=Coll|first4=Patrice|title=Prebiotic-like chemistry on Titan|journal= Chemical Society Reviews|year=2012|volume=41|issue=16|pages=5380–93|doi=10.1039/c2cs35014a|pmid=22481630}}</ref>。1969年落在澳大利亚维多利亚州默奇森河附近的默奇森陨石被发现含有超过90种不同的氨基酸,其中十九种存在于地球生命中。彗星和其他太阳系外围的冰冷天体被认为含有大量复杂的碳化合物(例如'''塞林 tholins ''') ,在天体的暗化表面经由这些步骤形成<ref>{{cite journal |vauthors=Thompson WR, Murray BG, Khare BN, Sagan C |title=Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system |journal=Journal of Geophysical Research |volume=92 |issue=A13 |pages=14933–47 |date=December 1987 |pmid=11542127 |doi=10.1029/JA092iA13p14933 |bibcode=1987JGR....9214933T|title-link=methane clathrate }}</ref>。早期的地球遭受了严重的彗星撞击,产生了大量复杂的有机分子以及水和其他挥发物<ref>{{cite journal|last=PIERAZZO|first=E.|author2=CHYBA C.F.|title=Amino acid survival in large cometary impacts|journal=Meteoritics & Planetary Science|year=2010|volume=34|issue=6|pages=909–918|doi=10.1111/j.1945-5100.1999.tb01409.x|bibcode=1999M&PS...34..909P}}</ref>。这被用来推断地球以外生命的起源: '''胚种论 the panspermia hypothesis |
| '''。 | | '''。 |
| | | |
| + | 近年来,人们对“老”基因中“老”区域产物的氨基酸组成进行了研究。这些氨基酸常见于几种广泛分离的物种的有机体中——假设它们只共享所有现存物种的最后一个宇宙祖先(LUA)。这些研究发现,这些区域的产物富含那些在米勒尤里实验中也最容易产生的氨基酸。这表明,最初的遗传密码基于与现在相比更少的氨基酸—那些只存在于生命起源前的大自然之中的氨基酸。<ref>{{cite journal |author1=Brooks D.J. |author2=Fresco J.R. |author3=Lesk A.M. |author4=Singh M. |url=http://mbe.oupjournals.org/cgi/content/full/19/10/1645 |title=Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code |journal=Molecular Biology and Evolution |date=October 1, 2002 |volume=19 |pages=1645–55 |pmid=12270892 |issue=10 |doi=10.1093/oxfordjournals.molbev.a003988 |url-status=dead |archiveurl=https://web.archive.org/web/20041213094516/http://mbe.oupjournals.org/cgi/content/full/19/10/1645 |archivedate=December 13, 2004 |doi-access=free }}</ref> |
| | | |
− | In recent years, studies have been made of the [[amino acid]] composition of the products of "old" areas in "old" genes, defined as those that are found to be common to organisms from several widely separated [[species]], assumed to share only the [[last universal ancestor]] (LUA) of all extant species. These studies found that the products of these areas are enriched in those amino acids that are also most readily produced in the Miller–Urey experiment. This suggests that the original genetic code was based on a smaller number of amino acids – only those available in prebiotic nature – than the current one.<ref>{{cite journal |author1=Brooks D.J. |author2=Fresco J.R. |author3=Lesk A.M. |author4=Singh M. |url=http://mbe.oupjournals.org/cgi/content/full/19/10/1645 |title=Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code |journal=Molecular Biology and Evolution |date=October 1, 2002 |volume=19 |pages=1645–55 |pmid=12270892 |issue=10 |doi=10.1093/oxfordjournals.molbev.a003988 |url-status=dead |archiveurl=https://web.archive.org/web/20041213094516/http://mbe.oupjournals.org/cgi/content/full/19/10/1645 |archivedate=December 13, 2004 |doi-access=free }}</ref>
| |
− |
| |
− | In recent years, studies have been made of the amino acid composition of the products of "old" areas in "old" genes, defined as those that are found to be common to organisms from several widely separated species, assumed to share only the last universal ancestor (LUA) of all extant species. These studies found that the products of these areas are enriched in those amino acids that are also most readily produced in the Miller–Urey experiment. This suggests that the original genetic code was based on a smaller number of amino acids – only those available in prebiotic nature – than the current one.
| |
− |
| |
− | 近年来,人们对“老”基因中“老”区域产物的氨基酸组成进行了研究。这些氨基酸常见于几种广泛分离的物种的有机体中——假设它们只共享所有现存物种的最后一个宇宙祖先(LUA)。这些研究发现,这些区域的产物富含那些在米勒尤里实验中也最容易产生的氨基酸。这表明,最初的遗传密码基于与现在相比更少的氨基酸—那些只存在于生命起源前的大自然之中的氨基酸<ref>{{cite journal |author1=Brooks D.J. |author2=Fresco J.R. |author3=Lesk A.M. |author4=Singh M. |url=http://mbe.oupjournals.org/cgi/content/full/19/10/1645 |title=Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code |journal=Molecular Biology and Evolution |date=October 1, 2002 |volume=19 |pages=1645–55 |pmid=12270892 |issue=10 |doi=10.1093/oxfordjournals.molbev.a003988 |url-status=dead |archiveurl=https://web.archive.org/web/20041213094516/http://mbe.oupjournals.org/cgi/content/full/19/10/1645 |archivedate=December 13, 2004 |doi-access=free }}</ref>
| |
− |
| |
− | 。
| |
| | | |
− | ==Recent related studies近年相关研究== | + | ==近年相关研究== |
− | [[Jeffrey Bada]], himself Miller's student, inherited the original equipment from the experiment when Miller died in 2007. Based on sealed vials from the original experiment, scientists have been able to show that although successful, Miller was never able to find out, with the equipment available to him, the full extent of the experiment's success. Later researchers have been able to isolate even more different amino acids, 25 altogether. Bada has estimated that more accurate measurements could easily bring out 30 or 40 more amino acids in very low concentrations, but the researchers have since discontinued the testing. Miller's experiment was therefore a remarkable success at synthesizing complex organic molecules from simpler chemicals, considering that all known life uses just 20 different amino acids.<ref name="BBC">{{cite web |website=BBC Four |url=http://www.bbc.co.uk/programmes/b00mbvfh |title=The Spark of Life |url-status=live |archive-url=https://web.archive.org/web/20101113011054/http://www.bbc.co.uk/programmes/b00mbvfh |archive-date=2010-11-13 |postscript=. TV Documentary. |date=26 August 2009}}</ref>
| |
| | | |
− | Jeffrey Bada, himself Miller's student, inherited the original equipment from the experiment when Miller died in 2007. Based on sealed vials from the original experiment, scientists have been able to show that although successful, Miller was never able to find out, with the equipment available to him, the full extent of the experiment's success. Later researchers have been able to isolate even more different amino acids, 25 altogether. Bada has estimated that more accurate measurements could easily bring out 30 or 40 more amino acids in very low concentrations, but the researchers have since discontinued the testing. Miller's experiment was therefore a remarkable success at synthesizing complex organic molecules from simpler chemicals, considering that all known life uses just 20 different amino acids.
| |
| Jeffery Bade是Miller的学生,他在2007年Miller去世时继承了这项实验的原始设备。根据最初实验中的密封小瓶,科学家们已经能够证明,虽然米勒成功了,但在现有设备条件下,Miller始终无法彻底的完成实验。后来的研究人员已经能够分离出更多不同的氨基酸,总共25种。Bade估测,在非常低的浓度下可以进行更精确地测量,从而提取出30或40种氨基酸,但是研究人员已经停止了这项测试。考虑到所有已知生命只使用20种不同的氨基酸,Miller的实验已经在从较简单的化学物质合成复杂有机分子方面取得了显著成功<ref name="BBC">{{cite web |website=BBC Four |url=http://www.bbc.co.uk/programmes/b00mbvfh |title=The Spark of Life |url-status=live |archive-url=https://web.archive.org/web/20101113011054/http://www.bbc.co.uk/programmes/b00mbvfh |archive-date=2010-11-13 |postscript=. TV Documentary. |date=26 August 2009}}</ref> | | Jeffery Bade是Miller的学生,他在2007年Miller去世时继承了这项实验的原始设备。根据最初实验中的密封小瓶,科学家们已经能够证明,虽然米勒成功了,但在现有设备条件下,Miller始终无法彻底的完成实验。后来的研究人员已经能够分离出更多不同的氨基酸,总共25种。Bade估测,在非常低的浓度下可以进行更精确地测量,从而提取出30或40种氨基酸,但是研究人员已经停止了这项测试。考虑到所有已知生命只使用20种不同的氨基酸,Miller的实验已经在从较简单的化学物质合成复杂有机分子方面取得了显著成功<ref name="BBC">{{cite web |website=BBC Four |url=http://www.bbc.co.uk/programmes/b00mbvfh |title=The Spark of Life |url-status=live |archive-url=https://web.archive.org/web/20101113011054/http://www.bbc.co.uk/programmes/b00mbvfh |archive-date=2010-11-13 |postscript=. TV Documentary. |date=26 August 2009}}</ref> |
| 。 | | 。 |
− | In 2008, a group of scientists examined 11 vials left over from Miller's experiments of the early 1950s. In addition to the classic experiment, reminiscent of [[Charles Darwin]]'s envisioned "warm little pond", Miller had also performed more experiments, including one with conditions similar to those of [[volcano|volcanic]] eruptions. This experiment had a nozzle spraying a jet of steam at the spark discharge. By using [[high-performance liquid chromatography]] and [[mass spectrometry]], the group found more organic molecules than Miller had. They found that the volcano-like experiment had produced the most organic molecules, 22 amino acids, 5 [[amine]]s and many [[hydroxylate]]d molecules, which could have been formed by [[hydroxyl radical]]s produced by the electrified steam. The group suggested that volcanic island systems became rich in organic molecules in this way, and that the presence of [[carbonyl sulfide]] there could have helped these molecules form [[peptide]]s.<ref name=Johnson2008>{{cite journal |vauthors=Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL |title=The Miller volcanic spark discharge experiment |journal=Science |volume=322 |issue=5900 |pages=404 |date=October 2008 |pmid=18927386 |doi=10.1126/science.1161527|bibcode = 2008Sci...322..404J }}</ref><ref>{{cite web | title='Lost' Miller–Urey Experiment Created More Of Life's Building Blocks | date=October 17, 2008 | website=Science Daily | url=https://www.sciencedaily.com/releases/2008/10/081016141411.htm | accessdate=2008-10-18 | url-status=live | archiveurl=https://web.archive.org/web/20081019111114/http://www.sciencedaily.com/releases/2008/10/081016141411.htm | archivedate=October 19, 2008 }}</ref>
| |
| | | |
− | In 2008, a group of scientists examined 11 vials left over from Miller's experiments of the early 1950s. In addition to the classic experiment, reminiscent of Charles Darwin's envisioned "warm little pond", Miller had also performed more experiments, including one with conditions similar to those of volcanic eruptions. This experiment had a nozzle spraying a jet of steam at the spark discharge. By using high-performance liquid chromatography and mass spectrometry, the group found more organic molecules than Miller had. They found that the volcano-like experiment had produced the most organic molecules, 22 amino acids, 5 amines and many hydroxylated molecules, which could have been formed by hydroxyl radicals produced by the electrified steam. The group suggested that volcanic island systems became rich in organic molecules in this way, and that the presence of carbonyl sulfide there could have helped these molecules form peptides.
| |
| | | |
| 2008年,一组科学家检查了Miller20世纪50年代早期实验中遗留下来的11个小瓶。除了这个经典实验外——让人想起查尔斯·达尔文 Charles Darwin设想的“温暖的小池塘”,米勒还进行了更多的实验,其中一个实验的条件与火山爆发时相似。这个实验有一个喷嘴在火花放电处喷射蒸汽。通过使用'''高效液相色谱 high-performance liquid chromatography'''和'''质谱 mass spectrometry ''',研究小组比Miller发现了更多的有机分子。他们发现,类似火山的实验产生了最多的有机分子,22个氨基酸,5个胺和许多羟基化分子,这些分子可能是由通电蒸汽产生的羟基自由基形成的。研究小组认为,火山岛系统因这种方式而富含有机分子,而羰基硫化物的存在可能有助于这些分子形成'''肽 peptides'''。<ref name=Johnson2008>{{cite journal |vauthors=Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL |title=The Miller volcanic spark discharge experiment |journal=Science |volume=322 |issue=5900 |pages=404 |date=October 2008 |pmid=18927386 |doi=10.1126/science.1161527|bibcode = 2008Sci...322..404J }}</ref><ref>{{cite web | title='Lost' Miller–Urey Experiment Created More Of Life's Building Blocks | date=October 17, 2008 | website=Science Daily | url=https://www.sciencedaily.com/releases/2008/10/081016141411.htm | accessdate=2008-10-18 | url-status=live | archiveurl=https://web.archive.org/web/20081019111114/http://www.sciencedaily.com/releases/2008/10/081016141411.htm | archivedate=October 19, 2008 }}</ref> | | 2008年,一组科学家检查了Miller20世纪50年代早期实验中遗留下来的11个小瓶。除了这个经典实验外——让人想起查尔斯·达尔文 Charles Darwin设想的“温暖的小池塘”,米勒还进行了更多的实验,其中一个实验的条件与火山爆发时相似。这个实验有一个喷嘴在火花放电处喷射蒸汽。通过使用'''高效液相色谱 high-performance liquid chromatography'''和'''质谱 mass spectrometry ''',研究小组比Miller发现了更多的有机分子。他们发现,类似火山的实验产生了最多的有机分子,22个氨基酸,5个胺和许多羟基化分子,这些分子可能是由通电蒸汽产生的羟基自由基形成的。研究小组认为,火山岛系统因这种方式而富含有机分子,而羰基硫化物的存在可能有助于这些分子形成'''肽 peptides'''。<ref name=Johnson2008>{{cite journal |vauthors=Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL |title=The Miller volcanic spark discharge experiment |journal=Science |volume=322 |issue=5900 |pages=404 |date=October 2008 |pmid=18927386 |doi=10.1126/science.1161527|bibcode = 2008Sci...322..404J }}</ref><ref>{{cite web | title='Lost' Miller–Urey Experiment Created More Of Life's Building Blocks | date=October 17, 2008 | website=Science Daily | url=https://www.sciencedaily.com/releases/2008/10/081016141411.htm | accessdate=2008-10-18 | url-status=live | archiveurl=https://web.archive.org/web/20081019111114/http://www.sciencedaily.com/releases/2008/10/081016141411.htm | archivedate=October 19, 2008 }}</ref> |
| 。 | | 。 |
| | | |
− | The main problem of theories based around [[amino acids]] is the difficulty in obtaining spontaneous formation of peptides. Since [[John Desmond Bernal]]'s suggestion that clay surfaces could have played a role in [[abiogenesis]]<ref name=Bernal1949>{{cite journal |vauthors=Bernal JD |title=The physical basis of life |journal=Proc. Phys. Soc. A | issue=9 |volume=62 |pages=537–558 |date=1949|doi=10.1088/0370-1298/62/9/301 |bibcode=1949PPSA...62..537B }}</ref>, scientific efforts have been dedicated to investigating clay-mediated [[peptide bond]] formation, with limited success. Peptides formed remained over-protected and shown no evidence of inheritance or metabolism. In December 2017 a theoretical model developed by Erastova and collaborators <ref name="RT-2018">{{cite news | publisher=RT | url=https://www.rt.com/news/416581-scientists-unlock-life-puzzle-protein/ | title='How did life form from rocks?' Protein puzzle reveals secrets of Earth's evolution | date=January 2017}}</ref><ref name="Erastova2017">{{cite journal |vauthors=Erastova V, Degiacomi MT, Fraser D, Greenwell HC |title=Mineral surface chemistry control for origin of prebiotic peptides |journal=Nature Communications |volume=8 |issue=1 |pages=2033 |date=December 2017|pmid=29229963 |pmc=5725419 |doi=10.1038/s41467-017-02248-y |bibcode=2017NatCo...8.2033E }}</ref> suggested that peptides could form at the interlayers of [[layered double hydroxides]] such as [[green rust]] in early earth conditions. According to the model, drying of the intercalated layered material should provide energy and co-alignment required for peptide bond formation in a [[ribosome]]-like fashion, while re-wetting should allow mobilising the newly formed peptides and repopulate the interlayer with new amino acids. This mechanism is expected to lead to the formation of 12+ amino acid-long peptides within 15-20 washes. Researches also observed slightly different adsorption preferences for different amino acids, and postulated that, if coupled to a diluted solution of mixed amino acids, such preferences could lead to sequencing.
| |
− |
| |
− |
| |
− | The main problem of theories based around amino acids is the difficulty in obtaining spontaneous formation of peptides. Since John Desmond Bernal's suggestion that clay surfaces could have played a role in abiogenesis, scientific efforts have been dedicated to investigating clay-mediated peptide bond formation, with limited success. Peptides formed remained over-protected and shown no evidence of inheritance or metabolism. In December 2017 a theoretical model developed by Erastova and collaborators suggested that peptides could form at the interlayers of layered double hydroxides such as green rust in early earth conditions. According to the model, drying of the intercalated layered material should provide energy and co-alignment required for peptide bond formation in a ribosome-like fashion, while re-wetting should allow mobilising the newly formed peptides and repopulate the interlayer with new amino acids. This mechanism is expected to lead to the formation of 12+ amino acid-long peptides within 15-20 washes. Researches also observed slightly different adsorption preferences for different amino acids, and postulated that, if coupled to a diluted solution of mixed amino acids, such preferences could lead to sequencing.
| |
| | | |
| 以氨基酸为基础的理论的主要问题是很难获得自发形成的肽。自从约翰·德斯蒙德·伯纳尔John Desmond Bernal提出粘土表面可能在自然发生中起作用这一构想以来<ref name=Bernal1949>{{cite journal |vauthors=Bernal JD |title=The physical basis of life |journal=Proc. Phys. Soc. A | issue=9 |volume=62 |pages=537–558 |date=1949|doi=10.1088/0370-1298/62/9/301 |bibcode=1949PPSA...62..537B }}</ref>,科学家就致力于研究粘土介导的肽键的形成,但成效有限。形成的肽保护过度,没有表现出遗传或新陈代谢的特征。2017年12月,伊拉斯托瓦 Erastova和他的合作者<ref name="RT-2018">{{cite news | publisher=RT | url=https://www.rt.com/news/416581-scientists-unlock-life-puzzle-protein/ | title='How did life form from rocks?' Protein puzzle reveals secrets of Earth's evolution | date=January 2017}}</ref><ref name="Erastova2017">{{cite journal |vauthors=Erastova V, Degiacomi MT, Fraser D, Greenwell HC |title=Mineral surface chemistry control for origin of prebiotic peptides |journal=Nature Communications |volume=8 |issue=1 |pages=2033 |date=December 2017|pmid=29229963 |pmc=5725419 |doi=10.1038/s41467-017-02248-y |bibcode=2017NatCo...8.2033E }}</ref>开发的一个理论模型表明,在早期的地球条件下,肽可以在层状双氢氧化物的中间层形成,例如绿锈。根据该模型,干燥的插层材料应为肽键的形成提供能量和,并以核糖体样的方式形成肽键所需的共排列,而再湿润应允许活化新形成的肽以及用新的氨基酸重新填充中间层。这一机制有望在15-20次的洗涤中形成12 + 氨基酸长肽。研究人员还观察到对不同氨基酸的吸附偏好略有不同,并假设,如果与混合氨基酸的稀释溶液相结合,这种偏好可能会导致排序。 | | 以氨基酸为基础的理论的主要问题是很难获得自发形成的肽。自从约翰·德斯蒙德·伯纳尔John Desmond Bernal提出粘土表面可能在自然发生中起作用这一构想以来<ref name=Bernal1949>{{cite journal |vauthors=Bernal JD |title=The physical basis of life |journal=Proc. Phys. Soc. A | issue=9 |volume=62 |pages=537–558 |date=1949|doi=10.1088/0370-1298/62/9/301 |bibcode=1949PPSA...62..537B }}</ref>,科学家就致力于研究粘土介导的肽键的形成,但成效有限。形成的肽保护过度,没有表现出遗传或新陈代谢的特征。2017年12月,伊拉斯托瓦 Erastova和他的合作者<ref name="RT-2018">{{cite news | publisher=RT | url=https://www.rt.com/news/416581-scientists-unlock-life-puzzle-protein/ | title='How did life form from rocks?' Protein puzzle reveals secrets of Earth's evolution | date=January 2017}}</ref><ref name="Erastova2017">{{cite journal |vauthors=Erastova V, Degiacomi MT, Fraser D, Greenwell HC |title=Mineral surface chemistry control for origin of prebiotic peptides |journal=Nature Communications |volume=8 |issue=1 |pages=2033 |date=December 2017|pmid=29229963 |pmc=5725419 |doi=10.1038/s41467-017-02248-y |bibcode=2017NatCo...8.2033E }}</ref>开发的一个理论模型表明,在早期的地球条件下,肽可以在层状双氢氧化物的中间层形成,例如绿锈。根据该模型,干燥的插层材料应为肽键的形成提供能量和,并以核糖体样的方式形成肽键所需的共排列,而再湿润应允许活化新形成的肽以及用新的氨基酸重新填充中间层。这一机制有望在15-20次的洗涤中形成12 + 氨基酸长肽。研究人员还观察到对不同氨基酸的吸附偏好略有不同,并假设,如果与混合氨基酸的稀释溶液相结合,这种偏好可能会导致排序。 |
| | | |
− | In October 2018, researchers at [[McMaster University]] on behalf of the [[Origins Institute]] announced the development of a new technology, called a ''[[Planet Simulator]]'', to help study the [[origin of life]] on planet [[Earth]] and beyond.<ref name="BW-20181004">{{cite news |last=Balch |first=Erica |title=Ground-breaking lab poised to unlock the mystery of the origins of life on Earth and beyond |url=https://brighterworld.mcmaster.ca/articles/ground-breaking-lab-poised-to-unlock-the-mystery-of-the-origins-of-life-on-earth-and-beyond/ |date=4 October 2018 |work=[[McMaster University]] |accessdate=4 October 2018 }}</ref><ref name="EA-20181004">{{cite news |author=Staff |title=Ground-breaking lab poised to unlock the mystery of the origins of life |url=https://www.eurekalert.org/pub_releases/2018-10/mu-glp100418.php |date=4 October 2018 |work=[[EurekAlert!]] |accessdate=14 October 2018 }}</ref><ref name="IVG-2018">{{cite web |author=Staff |title=Planet Simulator |url=https://www.intravisiongroup.com/planet-simulator |date=2018 |work=IntraVisionGroup.com |accessdate=14 October 2018 }}</ref><ref name="ES-209181014">{{cite web |last=Anderson |first=Paul Scott |title=New technology may help solve mystery of life's origins - How did life on Earth begin? A new technology, called Planet Simulator, might finally help solve the mystery. |url=http://earthsky.org/space/new-technology-solve-mystery-of-lifes-origins |date=14 October 2018 |work=[[EarthSky]] |accessdate=14 October 2018 }}</ref>
| |
− |
| |
− |
| |
− | In October 2018, researchers at McMaster University on behalf of the Origins Institute announced the development of a new technology, called a Planet Simulator, to help study the origin of life on planet Earth and beyond.
| |
| | | |
| 2018年10月,麦马士达大学的研究人员代表起源研究所宣布了一项名为行星模拟器的新技术的发展。该技术以帮助研究行星地球及其他地方生命起源问题为目标<ref name="BW-20181004">{{cite news |last=Balch |first=Erica |title=Ground-breaking lab poised to unlock the mystery of the origins of life on Earth and beyond |url=https://brighterworld.mcmaster.ca/articles/ground-breaking-lab-poised-to-unlock-the-mystery-of-the-origins-of-life-on-earth-and-beyond/ |date=4 October 2018 |work=[[McMaster University]] |accessdate=4 October 2018 }}</ref><ref name="EA-20181004">{{cite news |author=Staff |title=Ground-breaking lab poised to unlock the mystery of the origins of life |url=https://www.eurekalert.org/pub_releases/2018-10/mu-glp100418.php |date=4 October 2018 |work=[[EurekAlert!]] |accessdate=14 October 2018 }}</ref><ref name="IVG-2018">{{cite web |author=Staff |title=Planet Simulator |url=https://www.intravisiongroup.com/planet-simulator |date=2018 |work=IntraVisionGroup.com |accessdate=14 October 2018 }}</ref><ref name="ES-209181014">{{cite web |last=Anderson |first=Paul Scott |title=New technology may help solve mystery of life's origins - How did life on Earth begin? A new technology, called Planet Simulator, might finally help solve the mystery. |url=http://earthsky.org/space/new-technology-solve-mystery-of-lifes-origins |date=14 October 2018 |work=[[EarthSky]] |accessdate=14 October 2018 }}</ref> | | 2018年10月,麦马士达大学的研究人员代表起源研究所宣布了一项名为行星模拟器的新技术的发展。该技术以帮助研究行星地球及其他地方生命起源问题为目标<ref name="BW-20181004">{{cite news |last=Balch |first=Erica |title=Ground-breaking lab poised to unlock the mystery of the origins of life on Earth and beyond |url=https://brighterworld.mcmaster.ca/articles/ground-breaking-lab-poised-to-unlock-the-mystery-of-the-origins-of-life-on-earth-and-beyond/ |date=4 October 2018 |work=[[McMaster University]] |accessdate=4 October 2018 }}</ref><ref name="EA-20181004">{{cite news |author=Staff |title=Ground-breaking lab poised to unlock the mystery of the origins of life |url=https://www.eurekalert.org/pub_releases/2018-10/mu-glp100418.php |date=4 October 2018 |work=[[EurekAlert!]] |accessdate=14 October 2018 }}</ref><ref name="IVG-2018">{{cite web |author=Staff |title=Planet Simulator |url=https://www.intravisiongroup.com/planet-simulator |date=2018 |work=IntraVisionGroup.com |accessdate=14 October 2018 }}</ref><ref name="ES-209181014">{{cite web |last=Anderson |first=Paul Scott |title=New technology may help solve mystery of life's origins - How did life on Earth begin? A new technology, called Planet Simulator, might finally help solve the mystery. |url=http://earthsky.org/space/new-technology-solve-mystery-of-lifes-origins |date=14 October 2018 |work=[[EarthSky]] |accessdate=14 October 2018 }}</ref> |
第280行: |
第166行: |
| ==Amino acids identified氨基酸鉴定 == | | ==Amino acids identified氨基酸鉴定 == |
| | | |
− | Below is a table of amino acids produced and identified in the "classic" 1952 experiment, as published by Miller in 1953,<ref name=miller1953/> the 2008 re-analysis of vials from the volcanic spark discharge experiment,<ref>{{cite web|last1=Myers|first1=P. Z.|title=Old scientists never clean out their refrigerators|url=http://scienceblogs.com/pharyngula/2008/10/old_scientists_never_clean_out.php|website=Pharyngula|accessdate=7 April 2016|archiveurl=https://web.archive.org/web/20081017231050/http://scienceblogs.com/pharyngula/2008/10/old_scientists_never_clean_out.php|archivedate=October 17, 2008|date=October 16, 2008}}</ref> and the 2010 re-analysis of vials from the H<sub>2</sub>S-rich spark discharge experiment.<ref>{{cite journal|title=Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment|journal=Proceedings of the National Academy of Sciences|date=February 14, 2011|volume=108|issue=14|doi=10.1073/pnas.1019191108|pmid=21422282|pmc=3078417|pages=5526–31|last1=Parker|first1=ET|last2=Cleaves|first2=HJ|last3=Dworkin|first3=JP|display-authors=etal |bibcode=2011PNAS..108.5526P|df=}}</ref>
| |
− |
| |
− |
| |
− | Below is a table of amino acids produced and identified in the "classic" 1952 experiment, as published by Miller in 1953, and the 2010 re-analysis of vials from the H<sub>2</sub>S-rich spark discharge experiment.
| |
| | | |
| 下面是依据1953年Miller发表的论文给出的1952年“经典”实验中产生并经过鉴定的氨基酸表<ref>{{cite web|last1=Myers|first1=P. Z.|title=Old scientists never clean out their refrigerators|url=http://scienceblogs.com/pharyngula/2008/10/old_scientists_never_clean_out.php|website=Pharyngula|accessdate=7 April 2016|archiveurl=https://web.archive.org/web/20081017231050/http://scienceblogs.com/pharyngula/2008/10/old_scientists_never_clean_out.php|archivedate=October 17, 2008|date=October 16, 2008}}</ref>,以及2010年对H2S高密度火花放电实验中小瓶的重新分析<ref>{{cite journal|title=Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment|journal=Proceedings of the National Academy of Sciences|date=February 14, 2011|volume=108|issue=14|doi=10.1073/pnas.1019191108|pmid=21422282|pmc=3078417|pages=5526–31|last1=Parker|first1=ET|last2=Cleaves|first2=HJ|last3=Dworkin|first3=JP|display-authors=etal |bibcode=2011PNAS..108.5526P|df=}}</ref> | | 下面是依据1953年Miller发表的论文给出的1952年“经典”实验中产生并经过鉴定的氨基酸表<ref>{{cite web|last1=Myers|first1=P. Z.|title=Old scientists never clean out their refrigerators|url=http://scienceblogs.com/pharyngula/2008/10/old_scientists_never_clean_out.php|website=Pharyngula|accessdate=7 April 2016|archiveurl=https://web.archive.org/web/20081017231050/http://scienceblogs.com/pharyngula/2008/10/old_scientists_never_clean_out.php|archivedate=October 17, 2008|date=October 16, 2008}}</ref>,以及2010年对H2S高密度火花放电实验中小瓶的重新分析<ref>{{cite journal|title=Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment|journal=Proceedings of the National Academy of Sciences|date=February 14, 2011|volume=108|issue=14|doi=10.1073/pnas.1019191108|pmid=21422282|pmc=3078417|pages=5526–31|last1=Parker|first1=ET|last2=Cleaves|first2=HJ|last3=Dworkin|first3=JP|display-authors=etal |bibcode=2011PNAS..108.5526P|df=}}</ref> |
第289行: |
第171行: |
| | | |
| {{Category see also|Chemical synthesis of amino acids}} | | {{Category see also|Chemical synthesis of amino acids}} |
− |
| |
| | | |
| | | |
第1,869行: |
第1,750行: |
| | | |
| | | |
− | ==External links外部链接== | + | ==外部链接== |
| | | |
| *[http://millerureyexperiment.com A simulation of the Miller–Urey Experiment along with a video Interview with Stanley Miller] by Scott Ellis from CalSpace (UCSD) | | *[http://millerureyexperiment.com A simulation of the Miller–Urey Experiment along with a video Interview with Stanley Miller] by Scott Ellis from CalSpace (UCSD) |
第1,893行: |
第1,774行: |
| {{Origin of life}} | | {{Origin of life}} |
| | | |
− | Category:Articles containing video clips
| |
| | | |
− | 类别: 包含视频剪辑的文章
| |
| | | |
− | {{portal bar|Biology|Chemistry|Science}}
| |
− |
| |
− | Category:Biology experiments
| |
| | | |
| 类别: 生物学实验 | | 类别: 生物学实验 |
− |
| |
− | {{DEFAULTSORT:Miller-Urey Experiment}}
| |
− |
| |
− | Category:Chemical synthesis of amino acids
| |
− |
| |
− | 类别: 氨基酸化学合成
| |
− |
| |
− | [[Category:Articles containing video clips]]
| |
− |
| |
− | Category:Chemistry experiments
| |
| | | |
| 类别: 化学实验 | | 类别: 化学实验 |
| | | |
− | [[Category:Biology experiments]]
| |
| | | |
− | Category:Origin of life
| |
| | | |
| 类别: 生命的起源 | | 类别: 生命的起源 |
| | | |
− | [[Category:Chemical synthesis of amino acids]]
| |
− |
| |
− | Category:1952 in biology
| |
− |
| |
− | 分类: 1952年生物学
| |
− |
| |
− | [[Category:Chemistry experiments]]
| |
− |
| |
− | Category:1953 in biology
| |
− |
| |
− | 分类: 1953年生物学
| |
− |
| |
− | [[Category:Origin of life]]
| |
− |
| |
− | Category:2008 in science
| |
− |
| |
− | 分类: 2008年科学
| |
− |
| |
− | <noinclude>
| |
| | | |
− | <small>This page was moved from [[wikipedia:en:Miller–Urey experiment]]. Its edit history can be viewed at [[米勒-尤里实验/edithistory]]</small></noinclude>
| |
| | | |
− | [[Category:待整理页面]]
| |
| | | |
| | | |