更改

跳到导航 跳到搜索
删除22字节 、 2021年8月28日 (六) 16:06
无编辑摘要
第22行: 第22行:  
总之,具有大量组件的、能够产生涌现现象的、结构化交互的系统可以称为'''复杂系统'''。对复杂系统得观察提出了许多挑战,因为观察者需要同时记录许多组件和交互的状态和状态转换。这种观测要求对状态的定义、状态空间和时间分辨率作出选择。怎样定义和度量系统的状态会影响到其他派生出来的度量方法,比如系统复杂性度量方法。
 
总之,具有大量组件的、能够产生涌现现象的、结构化交互的系统可以称为'''复杂系统'''。对复杂系统得观察提出了许多挑战,因为观察者需要同时记录许多组件和交互的状态和状态转换。这种观测要求对状态的定义、状态空间和时间分辨率作出选择。怎样定义和度量系统的状态会影响到其他派生出来的度量方法,比如系统复杂性度量方法。
   −
[[Image:complexity_figure1.jpg|thumb|300px|left|F1|Complexity as a mixture of order and disorder. Drawn after Huberman and Hogg (1986).]]
+
[[Image:complexity_figure1.jpg|thumb|300px|left|F1|复杂性是秩序和混乱的混合体。在胡伯曼和霍格之后绘制(1986 年)。]]
    
==复杂性的度量==
 
==复杂性的度量==
第52行: 第52行:  
'''预测信息 Predictive Information''' (Bialek 等,2001) ,虽然本身不是一个复杂性度量,但可以用来根据熵的可扩展性原理将系统分成不同的复杂性类别。例如,可扩展性表现在由越来越多的同质独立随机变量组成的系统中。这类系统的香农熵将随其大小线性增长。熵随系统大小的线性增长称为扩展性。然而,复杂系统的组成元素通常是异质的和相互依赖的。因此当随机变量数量的增长,熵并不总是线性增长的。一个给定系统偏离扩展性的方式也可以用来描述其复杂性。
 
'''预测信息 Predictive Information''' (Bialek 等,2001) ,虽然本身不是一个复杂性度量,但可以用来根据熵的可扩展性原理将系统分成不同的复杂性类别。例如,可扩展性表现在由越来越多的同质独立随机变量组成的系统中。这类系统的香农熵将随其大小线性增长。熵随系统大小的线性增长称为扩展性。然而,复杂系统的组成元素通常是异质的和相互依赖的。因此当随机变量数量的增长,熵并不总是线性增长的。一个给定系统偏离扩展性的方式也可以用来描述其复杂性。
   −
[[Image:complexity_figure2.jpg|thumb|400px|right|F2|Movie frames from a demonstration model of neural dynamics, consisting of 1600 spontaneously active Wison-Cowan neural mass units arranged on a sphere and coupled by excitatory connections.  Three cases are shown: sparse coupling (local connections only), uniform coupling (global connections only), and a mixture of local and global connections (forming a small-world network).  Neural complexity (Tononi et al., 1994; Sporns et al., 2000) is high only for the last case.]]
+
[[Image:complexity_figure2.jpg|thumb|400px|right|F2|电影帧来自神经动力学的演示模型,由1600个自发活跃的威森-考恩神经质量单元组成,这些单元排列在球体上,并辅之以兴奋连接。 显示三个案例:稀疏耦合(仅限本地连接)、均匀耦合(仅限全球连接)以及本地和全球连接的混合(形成小世界网络)。 神经复杂性(托尼等人,1994年;斯波恩斯等人,2000年)是高只为最后一个案件。]]
    
'''神经复杂性 Neural Complexity'''(Tononi 等,1994) ,与系统的延伸性相关,可以应用于任何经验系统,包括大脑。神经复杂度中的一个重要概念是'''集成度 Integration'''(也称为多信息) ,这是互信息的多元扩展,用于估计任意大系统中的统计结构的总量。集成度被定义为组成部分的个体熵之和与系统作为一个整体的联合熵之差。集成度在多个空间尺度上的分布表明了系统的复杂性。考虑以下三种情况(<figref>Complexity_figure2.jpg</figref>)。(1)具有统计独立成分的系统会呈现全局无序或随机动态。它的联合熵将正好等于组成熵之和,系统的集成度将为零,无论哪个空间尺度的系统被检查。(2)各组分之间的统计相关性将导致系统的联合熵相对于个体熵的收缩,从而导致正的集成度。如果一个系统的组成部分是高度耦合的,并且表现出统计依赖性以及同质动力学(即所有组成部分的行为完全相同) ,那么该系统的多个空间尺度上的集成估计平均遵循线性分布。(3)如果统计依赖关系是非同质的(例如涉及组件、模块或层次模式的分组) ,则集成的分布将偏离线性。偏差的总量是系统的复杂性。随机系统的复杂度为零,而齐次耦合系统的复杂度非常低。具有丰富结构和动态行为的系统具有很高的复杂性。
 
'''神经复杂性 Neural Complexity'''(Tononi 等,1994) ,与系统的延伸性相关,可以应用于任何经验系统,包括大脑。神经复杂度中的一个重要概念是'''集成度 Integration'''(也称为多信息) ,这是互信息的多元扩展,用于估计任意大系统中的统计结构的总量。集成度被定义为组成部分的个体熵之和与系统作为一个整体的联合熵之差。集成度在多个空间尺度上的分布表明了系统的复杂性。考虑以下三种情况(<figref>Complexity_figure2.jpg</figref>)。(1)具有统计独立成分的系统会呈现全局无序或随机动态。它的联合熵将正好等于组成熵之和,系统的集成度将为零,无论哪个空间尺度的系统被检查。(2)各组分之间的统计相关性将导致系统的联合熵相对于个体熵的收缩,从而导致正的集成度。如果一个系统的组成部分是高度耦合的,并且表现出统计依赖性以及同质动力学(即所有组成部分的行为完全相同) ,那么该系统的多个空间尺度上的集成估计平均遵循线性分布。(3)如果统计依赖关系是非同质的(例如涉及组件、模块或层次模式的分组) ,则集成的分布将偏离线性。偏差的总量是系统的复杂性。随机系统的复杂度为零,而齐次耦合系统的复杂度非常低。具有丰富结构和动态行为的系统具有很高的复杂性。
863

个编辑

导航菜单