更改

跳到导航 跳到搜索
添加310字节 、 2021年8月29日 (日) 23:09
搬运“栗子CUGB”对第二小节(量子电动力学中的发散)的翻译校正
第60行: 第60行:     
== Self-interactions in classical physics ==
 
== Self-interactions in classical physics ==
 +
== 经典物理中的自相互作用 ==
    
[[Image:Renormalized-vertex.png|thumbnail|upright=1.3|Figure 1. Renormalization in quantum electrodynamics: The simple electron/photon interaction that determines the electron's charge at one renormalization point is revealed to consist of more complicated interactions at another.|链接=Special:FilePath/Renormalized-vertex.png]]
 
[[Image:Renormalized-vertex.png|thumbnail|upright=1.3|Figure 1. Renormalization in quantum electrodynamics: The simple electron/photon interaction that determines the electron's charge at one renormalization point is revealed to consist of more complicated interactions at another.|链接=Special:FilePath/Renormalized-vertex.png]]
第156行: 第157行:     
== Divergences in quantum electrodynamics ==
 
== Divergences in quantum electrodynamics ==
 +
== 量子电动力学中的发散 ==
    
{{anchor|renormalization_loop_divergence}}
 
{{anchor|renormalization_loop_divergence}}
第183行: 第185行:  
When developing quantum electrodynamics in the 1930s, Max Born, Werner Heisenberg, Pascual Jordan, and Paul Dirac discovered that in perturbative  corrections  many integrals were divergent (see The problem of infinities).
 
When developing quantum electrodynamics in the 1930s, Max Born, Werner Heisenberg, Pascual Jordan, and Paul Dirac discovered that in perturbative  corrections  many integrals were divergent (see The problem of infinities).
   −
在20世纪30年代开发量子电动力学时,Max Born,维尔纳·海森堡,Pascual Jordan 和 Paul Dirac 发现许多积分在微扰修正中是发散的(见无穷大问题)。
+
在20世纪30年代发展量子电动力学时,马克斯·伯恩、维尔纳·海森堡、帕斯夸尔·乔丹和保罗·狄拉克发现,在微扰修正中,许多积分是发散的(见无穷大问题)。
      第191行: 第193行:  
One way of describing the perturbation theory corrections' divergences was discovered in 1947–49 by<!--in chronological order--> Hans Kramers<!--June 1947-->, Hans Bethe<!--August 1947-->,  
 
One way of describing the perturbation theory corrections' divergences was discovered in 1947–49 by<!--in chronological order--> Hans Kramers<!--June 1947-->, Hans Bethe<!--August 1947-->,  
   −
1947年至1949年间,汉斯 · 克莱默斯按照时间顺序发现了一种描述摄动理论修正差异的方法——1947年6月,
      
[[Julian Schwinger]]<!--February 1948-->,<ref>{{cite journal |author=Schwinger, J. |title=On quantum-electrodynamics and the magnetic moment of the electron |journal=[[Physical Review]] |volume=73 |issue=4 |pages=416–417 |year=1948|doi=10.1103/PhysRev.73.416 |bibcode=1948PhRv...73..416S |doi-access=free }}</ref><ref>{{cite journal |author=Schwinger, J. |series=Quantum Electrodynamics |title=I. A covariant formulation |journal=[[Physical Review]] |volume=74 |issue=10 |pages=1439–1461 |year=1948|doi=10.1103/PhysRev.74.1439 |bibcode=1948PhRv...74.1439S }}</ref><ref>{{cite journal |author=Schwinger, J. |series=Quantum Electrodynamics |title=II. Vacuum polarization and self-energy |journal=[[Physical Review]] |volume=75 |issue=4 |pages=651–679 |year=1949|doi=10.1103/PhysRev.75.651 |bibcode=1949PhRv...75..651S }}</ref><ref>{{cite journal |author=Schwinger, J. |series=Quantum Electrodynamics |title=III. The electromagnetic properties of the electron radiative corrections to scattering |journal=[[Physical Review]] |volume=76 |issue=6 |pages=790–817 |year=1949|doi=10.1103/PhysRev.76.790 |bibcode=1949PhRv...76..790S }}</ref> [[Richard Feynman]]<!--April 1948-->,<ref>{{cite journal |first=Richard P. |last=Feynman |title=Space-time approach to non-relativistic quantum mechanics |journal=[[Reviews of Modern Physics]] |volume=20 |pages=367–387 |year=1948 |doi=10.1103/RevModPhys.20.367 |bibcode=1948RvMP...20..367F |issue=2|url=https://authors.library.caltech.edu/47756/1/FEYrmp48.pdf }}</ref><ref>{{cite journal |last=Feynman  |first= Richard P. |title=A relativistic cut-off for classical electrodynamics  |journal=[[Physical Review]] |volume=74  |issue=8 |pages= 939–946 |year=1948  |doi=10.1103/PhysRev.74.939 |bibcode=1948PhRv...74..939F|url= https://authors.library.caltech.edu/3516/1/FEYpr48a.pdf }}</ref><ref>{{cite journal |first=Richard P. |last=Feynman |title=A relativistic cut-off for quantum electrodynamics |journal=[[Physical Review]] |volume=74 |pages=1430–1438 |year=1948 |doi=10.1103/PhysRev.74.1430 |bibcode=1948PhRv...74.1430F |issue=10|url=https://authors.library.caltech.edu/3517/1/FEYpr48b.pdf }}</ref> and [[Shin'ichiro Tomonaga]]<!--July 1948 (Koba–Tomonaga); according to S. S. Schweber, ''QED'', 1994, p. 269, Koba–Tomonaga contains the crucial calculation-->,<ref>{{cite journal | last=Tomonaga | first=S. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=1 | issue=2 | date=1946-08-01 | issn=1347-4081 | doi=10.1143/ptp.1.27 | pages=27–42|doi-access=free| bibcode=1946PThPh...1...27T }}</ref><ref>{{cite journal | last1=Koba | first1=Z. | last2=Tati | first2=T. | last3=Tomonaga | first3=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. II: Case of Interacting Electromagnetic and Electron Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=2 | issue=3 | date=1947-10-01 | issn=0033-068X | doi=10.1143/ptp/2.3.101 | pages=101–116|doi-access=free| bibcode=1947PThPh...2..101K }}</ref><ref>{{cite journal | last1=Koba | first1=Z. | last2=Tati | first2=T. | last3=Tomonaga | first3=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. III: Case of Interacting Electromagnetic and Electron Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=2 | issue=4 | date=1947-12-01 | issn=0033-068X | doi=10.1143/ptp/2.4.198 | pages=198–208|doi-access=free| bibcode=1947PThPh...2..198K }}</ref><ref>{{cite journal | last1=Kanesawa | first1=S. | last2=Tomonaga | first2=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. [IV]: Case of Interacting Electromagnetic and Meson Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=3 | issue=1 | date=1948-03-01 | issn=0033-068X | doi=10.1143/ptp/3.1.1 | pages=1–13|doi-access=free}}</ref><ref>{{cite journal | last1=Kanesawa | first1=S. | last2=Tomonaga | first2=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields V: Case of Interacting Electromagnetic and Meson Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=3 | issue=2 | date=1948-06-01 | issn=0033-068X | doi=10.1143/ptp/3.2.101 | pages=101–113|doi-access=free| bibcode=1948PThPh...3..101K }}</ref><ref>{{cite journal | last1=Koba | first1=Z. | last2=Tomonaga | first2=S.-i. | title=On Radiation Reactions in Collision Processes. I: Application of the "Self-Consistent" Subtraction Method to the Elastic Scattering of an Electron | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=3 | issue=3 | date=1948-09-01 | issn=0033-068X | doi=10.1143/ptp/3.3.290 | pages=290–303|doi-access=free| bibcode=1948PThPh...3..290K }}</ref><ref>{{cite journal | last1=Tomonaga | first1=Sin-Itiro | last2=Oppenheimer | first2=J. R. |author-link2=J. Robert Oppenheimer| title=On Infinite Field Reactions in Quantum Field Theory | journal=Physical Review | publisher=American Physical Society (APS) | volume=74 | issue=2 | date=1948-07-15 | issn=0031-899X | doi=10.1103/physrev.74.224 | pages=224–225| bibcode=1948PhRv...74..224T }}</ref> and systematized by [[Freeman Dyson]] in 1949.<ref>{{cite journal |author=Dyson, F. J. |title=The radiation theories of Tomonaga, Schwinger, and Feynman |journal=Phys. Rev. |volume=75 |pages=486–502 |year=1949|doi=10.1103/PhysRev.75.486 |issue=3 |bibcode=1949PhRv...75..486D |doi-access=free }}</ref> The divergences appear in radiative corrections  involving [[Feynman diagram]]s with closed ''loops'' of [[virtual particle]]s in them.
 
[[Julian Schwinger]]<!--February 1948-->,<ref>{{cite journal |author=Schwinger, J. |title=On quantum-electrodynamics and the magnetic moment of the electron |journal=[[Physical Review]] |volume=73 |issue=4 |pages=416–417 |year=1948|doi=10.1103/PhysRev.73.416 |bibcode=1948PhRv...73..416S |doi-access=free }}</ref><ref>{{cite journal |author=Schwinger, J. |series=Quantum Electrodynamics |title=I. A covariant formulation |journal=[[Physical Review]] |volume=74 |issue=10 |pages=1439–1461 |year=1948|doi=10.1103/PhysRev.74.1439 |bibcode=1948PhRv...74.1439S }}</ref><ref>{{cite journal |author=Schwinger, J. |series=Quantum Electrodynamics |title=II. Vacuum polarization and self-energy |journal=[[Physical Review]] |volume=75 |issue=4 |pages=651–679 |year=1949|doi=10.1103/PhysRev.75.651 |bibcode=1949PhRv...75..651S }}</ref><ref>{{cite journal |author=Schwinger, J. |series=Quantum Electrodynamics |title=III. The electromagnetic properties of the electron radiative corrections to scattering |journal=[[Physical Review]] |volume=76 |issue=6 |pages=790–817 |year=1949|doi=10.1103/PhysRev.76.790 |bibcode=1949PhRv...76..790S }}</ref> [[Richard Feynman]]<!--April 1948-->,<ref>{{cite journal |first=Richard P. |last=Feynman |title=Space-time approach to non-relativistic quantum mechanics |journal=[[Reviews of Modern Physics]] |volume=20 |pages=367–387 |year=1948 |doi=10.1103/RevModPhys.20.367 |bibcode=1948RvMP...20..367F |issue=2|url=https://authors.library.caltech.edu/47756/1/FEYrmp48.pdf }}</ref><ref>{{cite journal |last=Feynman  |first= Richard P. |title=A relativistic cut-off for classical electrodynamics  |journal=[[Physical Review]] |volume=74  |issue=8 |pages= 939–946 |year=1948  |doi=10.1103/PhysRev.74.939 |bibcode=1948PhRv...74..939F|url= https://authors.library.caltech.edu/3516/1/FEYpr48a.pdf }}</ref><ref>{{cite journal |first=Richard P. |last=Feynman |title=A relativistic cut-off for quantum electrodynamics |journal=[[Physical Review]] |volume=74 |pages=1430–1438 |year=1948 |doi=10.1103/PhysRev.74.1430 |bibcode=1948PhRv...74.1430F |issue=10|url=https://authors.library.caltech.edu/3517/1/FEYpr48b.pdf }}</ref> and [[Shin'ichiro Tomonaga]]<!--July 1948 (Koba–Tomonaga); according to S. S. Schweber, ''QED'', 1994, p. 269, Koba–Tomonaga contains the crucial calculation-->,<ref>{{cite journal | last=Tomonaga | first=S. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=1 | issue=2 | date=1946-08-01 | issn=1347-4081 | doi=10.1143/ptp.1.27 | pages=27–42|doi-access=free| bibcode=1946PThPh...1...27T }}</ref><ref>{{cite journal | last1=Koba | first1=Z. | last2=Tati | first2=T. | last3=Tomonaga | first3=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. II: Case of Interacting Electromagnetic and Electron Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=2 | issue=3 | date=1947-10-01 | issn=0033-068X | doi=10.1143/ptp/2.3.101 | pages=101–116|doi-access=free| bibcode=1947PThPh...2..101K }}</ref><ref>{{cite journal | last1=Koba | first1=Z. | last2=Tati | first2=T. | last3=Tomonaga | first3=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. III: Case of Interacting Electromagnetic and Electron Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=2 | issue=4 | date=1947-12-01 | issn=0033-068X | doi=10.1143/ptp/2.4.198 | pages=198–208|doi-access=free| bibcode=1947PThPh...2..198K }}</ref><ref>{{cite journal | last1=Kanesawa | first1=S. | last2=Tomonaga | first2=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. [IV]: Case of Interacting Electromagnetic and Meson Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=3 | issue=1 | date=1948-03-01 | issn=0033-068X | doi=10.1143/ptp/3.1.1 | pages=1–13|doi-access=free}}</ref><ref>{{cite journal | last1=Kanesawa | first1=S. | last2=Tomonaga | first2=S.-i. | title=On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields V: Case of Interacting Electromagnetic and Meson Fields | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=3 | issue=2 | date=1948-06-01 | issn=0033-068X | doi=10.1143/ptp/3.2.101 | pages=101–113|doi-access=free| bibcode=1948PThPh...3..101K }}</ref><ref>{{cite journal | last1=Koba | first1=Z. | last2=Tomonaga | first2=S.-i. | title=On Radiation Reactions in Collision Processes. I: Application of the "Self-Consistent" Subtraction Method to the Elastic Scattering of an Electron | journal=Progress of Theoretical Physics | publisher=Oxford University Press (OUP) | volume=3 | issue=3 | date=1948-09-01 | issn=0033-068X | doi=10.1143/ptp/3.3.290 | pages=290–303|doi-access=free| bibcode=1948PThPh...3..290K }}</ref><ref>{{cite journal | last1=Tomonaga | first1=Sin-Itiro | last2=Oppenheimer | first2=J. R. |author-link2=J. Robert Oppenheimer| title=On Infinite Field Reactions in Quantum Field Theory | journal=Physical Review | publisher=American Physical Society (APS) | volume=74 | issue=2 | date=1948-07-15 | issn=0031-899X | doi=10.1103/physrev.74.224 | pages=224–225| bibcode=1948PhRv...74..224T }}</ref> and systematized by [[Freeman Dyson]] in 1949.<ref>{{cite journal |author=Dyson, F. J. |title=The radiation theories of Tomonaga, Schwinger, and Feynman |journal=Phys. Rev. |volume=75 |pages=486–502 |year=1949|doi=10.1103/PhysRev.75.486 |issue=3 |bibcode=1949PhRv...75..486D |doi-access=free }}</ref> The divergences appear in radiative corrections  involving [[Feynman diagram]]s with closed ''loops'' of [[virtual particle]]s in them.
第197行: 第198行:  
Julian Schwinger<!--February 1948-->, Richard Feynman<!--April 1948-->, and Shin'ichiro Tomonaga<!--July 1948 (Koba–Tomonaga); according to S. S. Schweber, QED, 1994, p. 269, Koba–Tomonaga contains the crucial calculation-->, and systematized by Freeman Dyson in 1949. The divergences appear in radiative corrections  involving Feynman diagrams with closed loops of virtual particles in them.
 
Julian Schwinger<!--February 1948-->, Richard Feynman<!--April 1948-->, and Shin'ichiro Tomonaga<!--July 1948 (Koba–Tomonaga); according to S. S. Schweber, QED, 1994, p. 269, Koba–Tomonaga contains the crucial calculation-->, and systematized by Freeman Dyson in 1949. The divergences appear in radiative corrections  involving Feynman diagrams with closed loops of virtual particles in them.
   −
根据 s. s. schweber,qed,1994,p. 269,koba-Tomonaga 包含了至关重要的计算公式,并在1949年由 Freeman Dyson 系统化。发散出现在费曼图的辐射修正中,其中包含虚粒子的闭环。
+
一种描述微扰理论修正发散的方法是由Hans Kramers,[2] Hans Bethe,[3] Julian Schwinger,[4][5][6][7] Richard Feynman,[8][9][10]和Shin'ichiro Tomonaga,[11][12][13][14][15][16][17]在1947-49年发现的,并在1949年被Freeman Dyson系统化。发散出现在含虚粒子闭环的费曼图的辐射校正中。
 
        第205行: 第205行:  
While virtual particles obey conservation of energy and momentum, they can have any energy and momentum, even one that is not allowed by the relativistic energy–momentum relation for the observed mass of that particle (that is, <math>E^2 - p^2</math> is not necessarily the squared mass of the particle in that process, e.g. for a photon it could be nonzero). Such a particle is called off-shell. When there is a loop, the momentum of the particles involved in the loop is not uniquely determined by the energies and momenta of incoming and outgoing particles. A variation in the energy of one particle in the loop can be balanced by an equal and opposite change in the energy of another particle in the loop, without affecting the incoming and outgoing particles. Thus many variations are possible. So to find the amplitude for the loop process, one must integrate over all possible combinations of energy and momentum that could travel around the loop.
 
While virtual particles obey conservation of energy and momentum, they can have any energy and momentum, even one that is not allowed by the relativistic energy–momentum relation for the observed mass of that particle (that is, <math>E^2 - p^2</math> is not necessarily the squared mass of the particle in that process, e.g. for a photon it could be nonzero). Such a particle is called off-shell. When there is a loop, the momentum of the particles involved in the loop is not uniquely determined by the energies and momenta of incoming and outgoing particles. A variation in the energy of one particle in the loop can be balanced by an equal and opposite change in the energy of another particle in the loop, without affecting the incoming and outgoing particles. Thus many variations are possible. So to find the amplitude for the loop process, one must integrate over all possible combinations of energy and momentum that could travel around the loop.
   −
虽然虚粒子遵从能量和动量守恒,但是它们可以有任何能量和动量,甚至是那个粒子的观测质量的相对论能量-动量关系不允许的能量和动量(即 e ^ 2-p ^ 2 </math > 不一定是那个过程中粒子的质量的平方,例如:。对于一个光子来说,它可能是非零的)。这种粒子叫做脱壳粒子。当环路存在时,环路中的粒子的动量不是由入射粒子和出射粒子的能量和动量决定的。环中一个粒子能量的变化可以通过环中另一个粒子能量的相等和相反的变化来平衡,而不影响入射和出射粒子。因此有许多变化是可能的。所以为了找到这个循环过程的振幅,我们必须积分所有可能的能量和动量的组合,这些能量和动量可以在循环中传播。
+
虚粒子遵循能量和动量守恒,它们可以有任何能量和动量,甚至是观测到的粒子质量的相对能量和动量关系所不允许的能量和动量(即,{\displaystyle E^{2}-p^{2}}不一定是这个过程中粒子质量的平方,例如,对于光子它可能是非零的)。这样的粒子叫做离壳粒子。当有一个圈时,参与圈的粒子的动量不是唯一由入射和输出粒子的能量和动量决定的。圈中一个粒子能量的变化可以被圈中另一个粒子能量相等而相反的变化所平衡,而不影响进入和流出的粒子。因此,有许多变化是可能的。因此,为了找到圈过程的振幅,必须对所有可能的能量和动量的组合进行积分,这些组合可能在圈中传播。
      第213行: 第213行:  
These integrals are often divergent, that is, they give infinite answers.  The divergences that are significant are the "ultraviolet" (UV) ones. An ultraviolet divergence can be described as one that comes from
 
These integrals are often divergent, that is, they give infinite answers.  The divergences that are significant are the "ultraviolet" (UV) ones. An ultraviolet divergence can be described as one that comes from
   −
这些积分常常是发散的,也就是说,它们给出无穷的答案。最显著的分歧是“紫外线”(UV)分歧。紫外线辐散可以描述为一个来自
+
这些积分通常是发散的,也就是说,它们给出无限的结果。其中“紫外”发散较为显著。紫外发散来自于以下几种情形:
    
* the region in the integral where all particles in the loop have large energies and momenta,
 
* the region in the integral where all particles in the loop have large energies and momenta,
第221行: 第221行:  
* very short proper-time between particle emission and absorption, if the loop is thought of as a sum over particle paths.
 
* very short proper-time between particle emission and absorption, if the loop is thought of as a sum over particle paths.
   −
 
+
所有圈中粒子具有很大的能量和动量的积分区域;
 +
在场的路径积分中,场具有非常短的波长和高频涨落;
 +
如果这个圈是粒子路径的和,粒子发射和吸收之间的固有时间很短。
    
So these divergences are short-distance, short-time phenomena.
 
So these divergences are short-distance, short-time phenomena.
第227行: 第229行:  
So these divergences are short-distance, short-time phenomena.
 
So these divergences are short-distance, short-time phenomena.
   −
所以这些分歧是短距离、短时间的现象。
+
所以这些发散是短距离,短时间的现象。
      第235行: 第237行:  
Shown in the pictures at the right margin, there are exactly three one-loop divergent loop diagrams in quantum electrodynamics:
 
Shown in the pictures at the right margin, there are exactly three one-loop divergent loop diagrams in quantum electrodynamics:
   −
在右边的图片中,我们可以看到在量子电动力学中有三个单圈的发散性循环图表:
+
如右图所示。量子电动力学中有三个单圈发散圈图:
    
:(a) A photon creates a virtual electron–[[positron]] pair, which then annihilates. This is a [[vacuum polarization]] diagram.
 
:(a) A photon creates a virtual electron–[[positron]] pair, which then annihilates. This is a [[vacuum polarization]] diagram.
第241行: 第243行:  
(a) A photon creates a virtual electron–positron pair, which then annihilates. This is a vacuum polarization diagram.
 
(a) A photon creates a virtual electron–positron pair, which then annihilates. This is a vacuum polarization diagram.
   −
(a)光子产生一个虚电子-正电子对,这个对随后湮灭。这是一个真空极化图表。
+
(a)一个光子产生一个虚拟电子-正电子对,然后这个电子-正电子对湮灭。这是真空极化图。
    
:(b) An electron quickly emits and reabsorbs a virtual photon, called a [[self-energy]].
 
:(b) An electron quickly emits and reabsorbs a virtual photon, called a [[self-energy]].
第247行: 第249行:  
(b) An electron quickly emits and reabsorbs a virtual photon, called a self-energy.
 
(b) An electron quickly emits and reabsorbs a virtual photon, called a self-energy.
   −
一个电子很快地放射并重新吸收一个虚拟的光子,称为自能。
+
(b)电子迅速发射并重新吸收虚光子,称为自能。
    
:(c) An electron emits a photon, emits a second photon, and reabsorbs the first. This process is shown in the section below in figure&nbsp;2, and it is called a ''[[vertex renormalization]]''. The Feynman diagram for this is also called a “[[penguin diagram]]” due to its shape remotely resembling a penguin.
 
:(c) An electron emits a photon, emits a second photon, and reabsorbs the first. This process is shown in the section below in figure&nbsp;2, and it is called a ''[[vertex renormalization]]''. The Feynman diagram for this is also called a “[[penguin diagram]]” due to its shape remotely resembling a penguin.
第253行: 第255行:  
(c) An electron emits a photon, emits a second photon, and reabsorbs the first. This process is shown in the section below in figure&nbsp;2, and it is called a vertex renormalization. The Feynman diagram for this is also called a “penguin diagram” due to its shape remotely resembling a penguin.
 
(c) An electron emits a photon, emits a second photon, and reabsorbs the first. This process is shown in the section below in figure&nbsp;2, and it is called a vertex renormalization. The Feynman diagram for this is also called a “penguin diagram” due to its shape remotely resembling a penguin.
   −
(c)电子发射一个光子,第二个光子,并重新吸收第一个光子。这个过程如下面图2中的部分所示,它被称为顶点重整化。这幅费曼图也被称为“企鹅图” ,因为它的形状远远类似于企鹅。
+
(c)电子发射一个光子,发射第二个光子,并重新吸收第一个光子。这个过程如下面的图2所示,它被称为顶点重正化。费曼图也被称为“企鹅图”,因为它的形状很像企鹅。
      第261行: 第263行:  
The three divergences correspond to the three parameters in the theory under consideration:
 
The three divergences correspond to the three parameters in the theory under consideration:
   −
这三种不同对应于所审议的理论中的三个参数:
+
这三中发散对应于所考虑理论中的三个参数:
    
# The field normalization Z.
 
# The field normalization Z.
第267行: 第269行:  
  The field normalization Z.
 
  The field normalization Z.
   −
场的归一化 z。
+
1.场归一化因子Z
    
# The mass of the electron.
 
# The mass of the electron.
第273行: 第275行:  
  The mass of the electron.
 
  The mass of the electron.
   −
电子的质量。
+
2.电子的质量
    
# The charge of the electron.
 
# The charge of the electron.
第279行: 第281行:  
  The charge of the electron.
 
  The charge of the electron.
   −
电荷电子的电荷。
+
3.电子的电荷
      第287行: 第289行:  
The second class of divergence called an infrared divergence, is due to massless particles, like the photon. Every process involving charged particles emits infinitely many coherent photons of infinite wavelength, and the amplitude for emitting any finite number of photons is zero. For photons, these divergences are well understood. For example, at the 1-loop order, the vertex function has both ultraviolet and infrared divergences. In contrast to the ultraviolet divergence, the infrared divergence does not require the renormalization of a parameter in the theory involved. The infrared divergence of the vertex diagram is removed by including a diagram similar to the vertex diagram with the following important difference: the photon connecting the two legs of the electron is cut and replaced by two on-shell (i.e. real) photons whose wavelengths tend to infinity; this diagram is equivalent to the bremsstrahlung process. This additional diagram must be included because there is no physical way to distinguish a zero-energy photon flowing through a loop as in the vertex diagram and zero-energy photons emitted through bremsstrahlung. From a mathematical point of view, the IR divergences can be regularized by assuming fractional differentiation w.r.t. a parameter, for example:
 
The second class of divergence called an infrared divergence, is due to massless particles, like the photon. Every process involving charged particles emits infinitely many coherent photons of infinite wavelength, and the amplitude for emitting any finite number of photons is zero. For photons, these divergences are well understood. For example, at the 1-loop order, the vertex function has both ultraviolet and infrared divergences. In contrast to the ultraviolet divergence, the infrared divergence does not require the renormalization of a parameter in the theory involved. The infrared divergence of the vertex diagram is removed by including a diagram similar to the vertex diagram with the following important difference: the photon connecting the two legs of the electron is cut and replaced by two on-shell (i.e. real) photons whose wavelengths tend to infinity; this diagram is equivalent to the bremsstrahlung process. This additional diagram must be included because there is no physical way to distinguish a zero-energy photon flowing through a loop as in the vertex diagram and zero-energy photons emitted through bremsstrahlung. From a mathematical point of view, the IR divergences can be regularized by assuming fractional differentiation w.r.t. a parameter, for example:
   −
第二类发散叫做红外发散,是由于无质量的粒子,比如光子。每一个涉及带电粒子的过程都会发射无限多个波长相干的光子,而发射任意有限数量光子的振幅为零。对于光子来说,这些发散是可以理解的。例如,在1环阶段,顶点函数有紫外和红外发散。与紫外发散相比,红外发散不需要理论中参数的重整化。通过在顶点图中加入一个类似于顶点图的图来消除顶点图的红外发散,这个图有以下重要的区别: 连接电子两个支柱的光子被切割并被两个在壳层上的(即:。波长趋于无穷大的光子; 这个图表等价于韧致辐射过程。这个附加图必须包括在内,因为没有物理方法可以区分零能光子流过一个环,就像顶点图和通过韧致辐射发射的零能光子一样。从数学的角度来看,通过假设分数阶微分,可以正则化红外发散。一个参数,例如:
+
第二类发散称为红外发散,由无质量粒子造成的,比如光子。每一个涉及带电粒子的过程都会发射出无限多个波长无限的相干光子,而发射任意有限数量光子的振幅为零。对于光子来说,这些发散过程研究透彻,理解清晰。例如在单圈阶处,顶点函数既有紫外散度也有红外散度。与紫外发散相反,红外发散在理论中不需要参数的重整化。顶点图的红外散度通过包含一个类似于顶点图的图来消除,该图具有以下重要的特征:连接电子(两条腿?)的光子被切断并被两个波长趋向于无穷大的在壳(实)光子所取代;该图图相当于轫致辐射过程。该图被包含在内是必要的,因为没有物理方法来区分在顶点图中流过圈的零能量光子和通过轫致辐射发射的零能量光子。从数学的角度来看,红外发散可以通过假设对参数进行分数阶微分来正则化,例如:
      第295行: 第297行:  
<math> \left( p^2 - a^2 \right)^{\frac{1}{2}} </math>
 
<math> \left( p^2 - a^2 \right)^{\frac{1}{2}} </math>
   −
(p ^ 2-a ^ 2 right) ^ { frac {1}{2}} </math >  
+
<math> \left( p^2 - a^2 \right)^{\frac{1}{2}} </math>
      第303行: 第305行:  
is well defined at  a}} but is UV divergent; if we take the -th fractional derivative with respect to , we obtain the IR divergence
 
is well defined at  a}} but is UV divergent; if we take the -th fractional derivative with respect to , we obtain the IR divergence
   −
a }处定义良好,但是是紫外发散的,如果我们对 a }取第-次分数导数,我们就得到了红外发散
+
式1在{{math|''p'' {{=}} ''a''}}处定义良好,不过却是紫外散度;如果我们对{{math|−''a''<sup>2</sup>}}2求{{frac|3|2}}分数阶导数,就可以得到红外散度:
      第311行: 第313行:  
<math> \frac{1}{p^2 - a^2},</math>
 
<math> \frac{1}{p^2 - a^2},</math>
   −
1}{ p ^ 2-a ^ 2} ,
+
<math> \frac{1}{p^2 - a^2},</math>
      第319行: 第321行:  
so we can cure IR divergences by turning them into UV divergences.
 
so we can cure IR divergences by turning them into UV divergences.
   −
因此,我们可以通过将红外辐射分歧转化为紫外辐射分歧来治疗红外辐射分歧。
+
因此我们可以通过将红外发散转化为紫外发散对其进行修正。
          
=== A loop divergence ===
 
=== A loop divergence ===
 +
=== 单圈发散 ===
    
[[Image:Loop-diagram.png|thumb|upright=1.1|Figure 2. A diagram contributing to electron–electron scattering in QED. The loop has an ultraviolet divergence.|链接=Special:FilePath/Loop-diagram.png]]
 
[[Image:Loop-diagram.png|thumb|upright=1.1|Figure 2. A diagram contributing to electron–electron scattering in QED. The loop has an ultraviolet divergence.|链接=Special:FilePath/Loop-diagram.png]]
第335行: 第338行:  
The diagram in Figure 2 shows one of the several one-loop contributions to electron–electron scattering in QED. The electron on the left side of the diagram, represented by the solid line, starts out with 4-momentum  and ends up with 4-momentum . It emits a virtual photon carrying  to transfer energy and momentum to the other electron.  But in this diagram, before that happens, it emits another virtual photon carrying 4-momentum , and it reabsorbs this one after emitting the other virtual photon. Energy and momentum conservation do not determine the 4-momentum  uniquely, so all possibilities contribute equally and we must integrate.
 
The diagram in Figure 2 shows one of the several one-loop contributions to electron–electron scattering in QED. The electron on the left side of the diagram, represented by the solid line, starts out with 4-momentum  and ends up with 4-momentum . It emits a virtual photon carrying  to transfer energy and momentum to the other electron.  But in this diagram, before that happens, it emits another virtual photon carrying 4-momentum , and it reabsorbs this one after emitting the other virtual photon. Energy and momentum conservation do not determine the 4-momentum  uniquely, so all possibilities contribute equally and we must integrate.
   −
图2中的图表显示了 QED 中电子-电子散射的几个单环贡献之一。图中左边的电子,用实线表示,以4- 动量开始,以4- 动量结束。它放射出一个虚光子,携带能量和动量传递给另一个电子。但是在这个图表中,在它发生之前,它会放出另一个虚光子,携带4个动量,在放出另一个虚光子之后,它会重新吸收这个。能量守恒和动量守恒不能独特地决定4- 动量,因此所有的可能性都平等地作出贡献,我们必须加以整合。
+
图2中的图式显示了量子电动力学中单圈对电子-电子散射的贡献之一。图左侧的电子,用实线表示,开始时是4动量的pμ,结束时是4动量的rμ。它发射一个携带rμ−pμ的虚光子,将能量和动量传递给另一个电子。但在这张图中,在这之前,它发射了另一个4动量的qμ的虚光子,它在发射了另一个虚光子后重新吸收了这个。能量和动量守恒并不能唯一地决定4动量qμ,所以所有的可能性都是相等的,我们必须积分。
      第343行: 第346行:  
This diagram's amplitude ends up with, among other things, a factor from the loop of
 
This diagram's amplitude ends up with, among other things, a factor from the loop of
   −
这个图表的振幅,除了其他因素之外,还有一个来自
+
除去其他因素,该图的振幅最终成为下圈的一个因子:
      第351行: 第354行:  
<math>-ie^3 \int \frac{d^4 q}{(2\pi)^4} \gamma^\mu \frac{i (\gamma^\alpha (r - q)_\alpha + m)}{(r - q)^2 - m^2 + i \epsilon} \gamma^\rho \frac{i (\gamma^\beta (p - q)_\beta + m)}{(p - q)^2 - m^2 + i \epsilon} \gamma^\nu \frac{-i g_{\mu\nu}}{q^2 + i\epsilon}.</math>
 
<math>-ie^3 \int \frac{d^4 q}{(2\pi)^4} \gamma^\mu \frac{i (\gamma^\alpha (r - q)_\alpha + m)}{(r - q)^2 - m^2 + i \epsilon} \gamma^\rho \frac{i (\gamma^\beta (p - q)_\beta + m)}{(p - q)^2 - m^2 + i \epsilon} \gamma^\nu \frac{-i g_{\mu\nu}}{q^2 + i\epsilon}.</math>
   −
(2 pi) ^ 4} gamma ^ mu frac { i (gamma ^ alpha (r-q) _ alpha + m)}{(r-q) ^ 2-m ^ 2 + i epsilon } gamma ^ rho frac { i (gamma ^ beta (p-q) _ beta + m)}{(p-q) ^ 2-m ^ 2 + i epsilon } nu frac { i { nu ^ 2 + i epsilon }.数学
+
<math>-ie^3 \int \frac{d^4 q}{(2\pi)^4} \gamma^\mu \frac{i (\gamma^\alpha (r - q)_\alpha + m)}{(r - q)^2 - m^2 + i \epsilon} \gamma^\rho \frac{i (\gamma^\beta (p - q)_\beta + m)}{(p - q)^2 - m^2 + i \epsilon} \gamma^\nu \frac{-i g_{\mu\nu}}{q^2 + i\epsilon}.</math>
      第359行: 第362行:  
The various  factors in this expression are gamma matrices as in the covariant formulation of the Dirac equation; they have to do with the spin of the electron. The factors of  are the electric coupling constant, while the <math>i\epsilon</math> provide a heuristic definition of the contour of integration around the poles in the space of momenta. The important part for our purposes is the dependency on  of the three big factors in the integrand, which are from the propagators of the two electron lines and the photon line in the loop.
 
The various  factors in this expression are gamma matrices as in the covariant formulation of the Dirac equation; they have to do with the spin of the electron. The factors of  are the electric coupling constant, while the <math>i\epsilon</math> provide a heuristic definition of the contour of integration around the poles in the space of momenta. The important part for our purposes is the dependency on  of the three big factors in the integrand, which are from the propagators of the two electron lines and the photon line in the loop.
   −
这个表达式中的各种因素是类似于狄拉克方程的协变公式中的伽马矩阵,它们与电子的自旋有关。其因子是耦合常数,而动量空间中极点周围的积分等高线提供了一个启发式的定义。本文研究的重点是被积函数中三个重要因子的依赖性,它们分别来自于环路中的两电子线和光子线的传播子。
+
这个表达式中的各种γμ因子是和狄拉克方程的协变公式一样的伽马矩阵; 它们与电子的自旋有关。e的因子为电耦合常数,{\displaystyle i\epsilon}提供了动量空间中绕极点积分轮廓的启发式定义。对于我们的目的来说,重要的部分是被积函数中三个主要因子对qμ的依赖,这三个因子来自圈中的两条电子线和光子线的传播子。
      第367行: 第370行:  
This has a piece with two powers of  on top that dominates at large values of  (Pokorski 1987, p.&nbsp;122):
 
This has a piece with two powers of  on top that dominates at large values of  (Pokorski 1987, p.&nbsp;122):
   −
这里有一个顶上有两个幂的函数,它在大值上占主导地位(Pokorski 1987,第122页) :
+
这是一个上面有两个qμ的幂的部分,在较大的qμ值时占优势(Pokorski 1987, p. 122)
      第375行: 第378行:  
<math>e^3 \gamma^\mu \gamma^\alpha \gamma^\rho \gamma^\beta \gamma_\mu \int \frac{d^4 q}{(2\pi)^4} \frac{q_\alpha q_\beta}{(r - q)^2 (p - q)^2 q^2}.</math>
 
<math>e^3 \gamma^\mu \gamma^\alpha \gamma^\rho \gamma^\beta \gamma_\mu \int \frac{d^4 q}{(2\pi)^4} \frac{q_\alpha q_\beta}{(r - q)^2 (p - q)^2 q^2}.</math>
   −
< math > e ^ 3 gamma ^ mu gamma ^ alpha gamma ^ rho ^ rho gamma ^ beta gamma mu int frac { d ^ 4 q }{(2 pi) ^ 4} frac { q _ alpha q _ beta }{(r-q) ^ 2(p-q) ^ 2 q ^ 2} . </math >  
+
<math>e^3 \gamma^\mu \gamma^\alpha \gamma^\rho \gamma^\beta \gamma_\mu \int \frac{d^4 q}{(2\pi)^4} \frac{q_\alpha q_\beta}{(r - q)^2 (p - q)^2 q^2}.</math>
      第383行: 第386行:  
This integral is divergent and infinite, unless we cut it off at finite energy and momentum in some way.
 
This integral is divergent and infinite, unless we cut it off at finite energy and momentum in some way.
   −
这个积分是发散的,也是无穷的,除非我们以某种方式把它截断,在有限的能量和动量下。
+
这个积分是发散且无限的,除非我们在能量和动量有限的时候截断它。
      第391行: 第394行:  
Similar loop divergences occur in other quantum field theories.
 
Similar loop divergences occur in other quantum field theories.
   −
类似的圈发散现象在其他量子场理论中也有发生。
+
类似的环散度也出现在其他量子场论中。
     
13

个编辑

导航菜单