更改

跳到导航 跳到搜索
删除669字节 、 2021年9月2日 (四) 10:54
无编辑摘要
第4行: 第4行:     
{{Short description|Features that do not change if length or energy scales are multiplied by a common factor}}
 
{{Short description|Features that do not change if length or energy scales are multiplied by a common factor}}
[[File:Wiener process animated.gif|thumb|right|500px|The [[Wiener process]] is scale-invariant.|链接=Special:FilePath/Wiener_process_animated.gif]]
+
[[File:Wiener process animated.gif|thumb|right|500px|The [[Wiener process]] is scale-invariant.
 +
 
 +
维纳过程具有标度不变性。|链接=Special:FilePath/Wiener_process_animated.gif]]
    
In [[physics]], [[mathematics]] and [[statistics]], '''scale invariance''' is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.
 
In [[physics]], [[mathematics]] and [[statistics]], '''scale invariance''' is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.
第65行: 第67行:     
===Fractals 分形===
 
===Fractals 分形===
[[File:Kochsim.gif|thumb|right|250px|A [[Koch curve]] is [[self-similar]].|链接=Special:FilePath/Kochsim.gif]]
+
[[File:Kochsim.gif|thumb|right|250px|A [[Koch curve]] is [[self-similar]].
 +
 
 +
科赫雪花具有自相似性。|链接=Special:FilePath/Kochsim.gif]]
 
It is sometimes said that [[fractal]]s are scale-invariant, although more precisely, one should say that they are [[self-similar]]. A fractal is equal to itself typically for only a discrete set of values {{mvar|λ}}, and even then a translation and rotation may have to be applied to match the fractal up to itself.
 
It is sometimes said that [[fractal]]s are scale-invariant, although more precisely, one should say that they are [[self-similar]]. A fractal is equal to itself typically for only a discrete set of values {{mvar|λ}}, and even then a translation and rotation may have to be applied to match the fractal up to itself.
  −
It is sometimes said that fractals are scale-invariant, although more precisely, one should say that they are self-similar. A fractal is equal to itself typically for only a discrete set of values , and even then a translation and rotation may have to be applied to match the fractal up to itself.
      
有时人们认为分形是标度不变的,尽管更准确地来说,应该说分形是自相似的。分形通常是在某个{{mvar|λ}}值的离散集合内等同于其本身,即使这样,有时也需要通过平移和旋转变换来实现。
 
有时人们认为分形是标度不变的,尽管更准确地来说,应该说分形是自相似的。分形通常是在某个{{mvar|λ}}值的离散集合内等同于其本身,即使这样,有时也需要通过平移和旋转变换来实现。
    
Thus, for example, the [[Koch curve]] scales with {{math|∆ {{=}} 1}}, but the scaling holds only for values of {{math|''λ'' {{=}} 1/3<sup>''n''</sup>}} for integer {{mvar|n}}. In addition, the Koch curve scales not only at the origin, but, in a certain sense, "everywhere": miniature copies of itself can be found all along the curve.
 
Thus, for example, the [[Koch curve]] scales with {{math|∆ {{=}} 1}}, but the scaling holds only for values of {{math|''λ'' {{=}} 1/3<sup>''n''</sup>}} for integer {{mvar|n}}. In addition, the Koch curve scales not only at the origin, but, in a certain sense, "everywhere": miniature copies of itself can be found all along the curve.
  −
Thus, for example, the Koch curve scales with , but the scaling holds only for values of  for integer . In addition, the Koch curve scales not only at the origin, but, in a certain sense, "everywhere": miniature copies of itself can be found all along the curve.
      
因此,以{{math|∆ {{=}} 1}}的'''Koch Curve 科赫雪花'''缩放为例,但是该缩放只适用于{{math|''λ'' {{=}} 1/3<sup>''n''</sup>}},({{mvar|n}}为整数)的值。此外,科赫雪花不仅在初始点,而且在某种意义上,在整条曲线上都可以找到其“缩影”。
 
因此,以{{math|∆ {{=}} 1}}的'''Koch Curve 科赫雪花'''缩放为例,但是该缩放只适用于{{math|''λ'' {{=}} 1/3<sup>''n''</sup>}},({{mvar|n}}为整数)的值。此外,科赫雪花不仅在初始点,而且在某种意义上,在整条曲线上都可以找到其“缩影”。
    
Some fractals may have multiple scaling factors at play at once; such scaling is studied with [[multi-fractal analysis]].
 
Some fractals may have multiple scaling factors at play at once; such scaling is studied with [[multi-fractal analysis]].
  −
Some fractals may have multiple scaling factors at play at once; such scaling is studied with multi-fractal analysis.
      
某些分形可能同时具有多个标度因子,可以应用'''Multi-Fractal Analysis 多重分形分析'''进行研究。
 
某些分形可能同时具有多个标度因子,可以应用'''Multi-Fractal Analysis 多重分形分析'''进行研究。
    
Periodic [[External ray|external and internal rays]] are invariant curves .
 
Periodic [[External ray|external and internal rays]] are invariant curves .
  −
Periodic external and internal rays are invariant curves .
      
周期性外部和内部射线是不变的曲线。
 
周期性外部和内部射线是不变的曲线。
596

个编辑

导航菜单