更改

跳到导航 跳到搜索
删除63字节 、 2021年10月3日 (日) 11:03
无编辑摘要
第1行: 第1行:  
此词条Jie翻译。
 
此词条Jie翻译。
由CecileLi初步审校
+
由CecileLi初步审校,由潮升阶精校
    
{{About|the predator-prey equations|the competition equations|Competitive Lotka–Volterra equations}}
 
{{About|the predator-prey equations|the competition equations|Competitive Lotka–Volterra equations}}
第40行: 第40行:     
Lotka–Volterra方程组是Kolmogorov模型的一个示例,而Kolmogorov模型<ref name=":0" /><ref name=":1" /><ref name="scholarpedia" /> 具有更一般的模型框架,可以用来刻画捕食者与猎物之间因猎食,竞争,疾病和共生等关系而形成的生态动力系统。
 
Lotka–Volterra方程组是Kolmogorov模型的一个示例,而Kolmogorov模型<ref name=":0" /><ref name=":1" /><ref name="scholarpedia" /> 具有更一般的模型框架,可以用来刻画捕食者与猎物之间因猎食,竞争,疾病和共生等关系而形成的生态动力系统。
== History 历史 ==
+
== 历史 ==
    
The Lotka–Volterra predator–prey [[mathematical model|model]] was initially proposed by [[Alfred J. Lotka]] in the theory of autocatalytic chemical reactions in 1910.<ref name=":2">{{cite journal|last=Lotka|first=A. J.|title=Contribution to the Theory of Periodic Reaction|journal=[[Journal of Physical Chemistry A|J. Phys. Chem.]]|volume=14|issue=3|pages=271–274|year=1910|doi=10.1021/j150111a004|url=https://zenodo.org/record/1428768}}</ref><ref name="Goelmany">{{cite book|last=Goel|first=N. S.|display-authors=etal|title=On the Volterra and Other Non-Linear Models of Interacting Populations|location=|publisher=Academic Press|year=1971}}</ref> This was effectively the [[Logistic function#In ecology: modeling population growth|logistic equation]],<ref name=":3">{{cite journal|last=Berryman|first=A. A.|url=http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|title=The Origins and Evolution of Predator-Prey Theory|journal=[[Ecology (journal)|Ecology]]|volume=73|issue=5|pages=1530–1535|year=1992|url-status=dead|archive-url=https://web.archive.org/web/20100531204042/http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|archive-date=2010-05-31|df=|doi=10.2307/1940005|jstor=1940005}}</ref> originally derived by [[Pierre François Verhulst]].<ref name=":4">{{cite journal|last=Verhulst|first=P. H.|url=https://books.google.com/books?id=8GsEAAAAYAAJ|title=Notice sur la loi que la population poursuit dans son accroissement|journal=Corresp. Mathématique et Physique|volume=10|issue=|pages=113–121|year=1838}}</ref> In 1920 Lotka extended the model, via [[Andrey Kolmogorov]], to "organic systems" using a plant species and a herbivorous animal species as an example<ref name=":5">{{cite journal|last=Lotka|first=A. J.|pmc=1084562|title=Analytical Note on Certain Rhythmic Relations in Organic Systems|journal=[[Proc. Natl. Acad. Sci. U.S.A.]]|volume=6|issue=7|pages=410–415|year=1920|doi=10.1073/pnas.6.7.410|pmid=16576509|bibcode=1920PNAS....6..410L}}</ref> and in 1925 he used the equations to analyse predator–prey interactions in his book on [[biomathematics]].<ref name=":6">{{cite book|last=Lotka|first=A. J.|title=Elements of Physical Biology|location=|publisher=[[Williams and Wilkins]]|year=1925}}</ref> The same set of equations was published in 1926 by [[Vito Volterra]], a mathematician and physicist, who had become interested in [[mathematical biology]].<ref name="Goelmany"/><ref name=":7">{{cite journal|last=Volterra|first=V.|title=Variazioni e fluttuazioni del numero d'individui in specie animali conviventi|journal=[[Accademia dei Lincei|Mem. Acad. Lincei Roma]]|volume=2|issue=|pages=31–113|year=1926}}</ref><ref name=":8">{{cite book|last=Volterra|first=V.|chapter=Variations and fluctuations of the number of individuals in animal species living together|title=Animal Ecology|editor-last=Chapman|editor-first=R. N.|location=|publisher=[[McGraw–Hill]]|year=1931}}</ref> Volterra's enquiry was inspired through his interactions with the marine biologist [[Umberto D'Ancona]], who was courting his daughter at the time and later was to become his son-in-law. D'Ancona studied the fish catches in the [[Adriatic Sea]] and had noticed that the percentage of predatory fish caught had increased during the years of [[World War I]] (1914–18). This puzzled him, as the fishing effort had been very much reduced during the war years. Volterra developed his model independently from Lotka and used it to explain d'Ancona's observation.<ref name=":9">{{cite book|last=Kingsland|first=S.|title=Modeling Nature: Episodes in the History of Population Ecology|location=|publisher=University of Chicago Press|year=1995|isbn=978-0-226-43728-6}}</ref>
 
The Lotka–Volterra predator–prey [[mathematical model|model]] was initially proposed by [[Alfred J. Lotka]] in the theory of autocatalytic chemical reactions in 1910.<ref name=":2">{{cite journal|last=Lotka|first=A. J.|title=Contribution to the Theory of Periodic Reaction|journal=[[Journal of Physical Chemistry A|J. Phys. Chem.]]|volume=14|issue=3|pages=271–274|year=1910|doi=10.1021/j150111a004|url=https://zenodo.org/record/1428768}}</ref><ref name="Goelmany">{{cite book|last=Goel|first=N. S.|display-authors=etal|title=On the Volterra and Other Non-Linear Models of Interacting Populations|location=|publisher=Academic Press|year=1971}}</ref> This was effectively the [[Logistic function#In ecology: modeling population growth|logistic equation]],<ref name=":3">{{cite journal|last=Berryman|first=A. A.|url=http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|title=The Origins and Evolution of Predator-Prey Theory|journal=[[Ecology (journal)|Ecology]]|volume=73|issue=5|pages=1530–1535|year=1992|url-status=dead|archive-url=https://web.archive.org/web/20100531204042/http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|archive-date=2010-05-31|df=|doi=10.2307/1940005|jstor=1940005}}</ref> originally derived by [[Pierre François Verhulst]].<ref name=":4">{{cite journal|last=Verhulst|first=P. H.|url=https://books.google.com/books?id=8GsEAAAAYAAJ|title=Notice sur la loi que la population poursuit dans son accroissement|journal=Corresp. Mathématique et Physique|volume=10|issue=|pages=113–121|year=1838}}</ref> In 1920 Lotka extended the model, via [[Andrey Kolmogorov]], to "organic systems" using a plant species and a herbivorous animal species as an example<ref name=":5">{{cite journal|last=Lotka|first=A. J.|pmc=1084562|title=Analytical Note on Certain Rhythmic Relations in Organic Systems|journal=[[Proc. Natl. Acad. Sci. U.S.A.]]|volume=6|issue=7|pages=410–415|year=1920|doi=10.1073/pnas.6.7.410|pmid=16576509|bibcode=1920PNAS....6..410L}}</ref> and in 1925 he used the equations to analyse predator–prey interactions in his book on [[biomathematics]].<ref name=":6">{{cite book|last=Lotka|first=A. J.|title=Elements of Physical Biology|location=|publisher=[[Williams and Wilkins]]|year=1925}}</ref> The same set of equations was published in 1926 by [[Vito Volterra]], a mathematician and physicist, who had become interested in [[mathematical biology]].<ref name="Goelmany"/><ref name=":7">{{cite journal|last=Volterra|first=V.|title=Variazioni e fluttuazioni del numero d'individui in specie animali conviventi|journal=[[Accademia dei Lincei|Mem. Acad. Lincei Roma]]|volume=2|issue=|pages=31–113|year=1926}}</ref><ref name=":8">{{cite book|last=Volterra|first=V.|chapter=Variations and fluctuations of the number of individuals in animal species living together|title=Animal Ecology|editor-last=Chapman|editor-first=R. N.|location=|publisher=[[McGraw–Hill]]|year=1931}}</ref> Volterra's enquiry was inspired through his interactions with the marine biologist [[Umberto D'Ancona]], who was courting his daughter at the time and later was to become his son-in-law. D'Ancona studied the fish catches in the [[Adriatic Sea]] and had noticed that the percentage of predatory fish caught had increased during the years of [[World War I]] (1914–18). This puzzled him, as the fishing effort had been very much reduced during the war years. Volterra developed his model independently from Lotka and used it to explain d'Ancona's observation.<ref name=":9">{{cite book|last=Kingsland|first=S.|title=Modeling Nature: Episodes in the History of Population Ecology|location=|publisher=University of Chicago Press|year=1995|isbn=978-0-226-43728-6}}</ref>
第62行: 第62行:  
The Lotka–Volterra equations have a long history of use in [[Economics|economic theory]]; their initial application is commonly credited to [[Richard M. Goodwin|Richard Goodwin]] in 1965<ref name=":15">{{cite journal|last=Gandolfo|first=G.|authorlink=Giancarlo Gandolfo|title=Giuseppe Palomba and the Lotka–Volterra equations|journal=Rendiconti Lincei|volume=19|issue=4|pages=347–357|year=2008|doi=10.1007/s12210-008-0023-7|s2cid=140537163}}</ref> or 1967.<ref name=":16">{{cite book|last=Goodwin|first=R. M.|chapter=A Growth Cycle|title=Socialism, Capitalism and Economic Growth|chapter-url=https://archive.org/details/socialismcapital0000fein|chapter-url-access=registration|editor-last=Feinstein|editor-first=C. H.|publisher=[[Cambridge University Press]]|year=1967}}</ref><ref name=":17">{{cite journal|last1=Desai|first1=M.|last2=Ormerod|first2=P.|url=http://www.paulormerod.com/pdf/economicjournal1998.pdf|title=Richard Goodwin: A Short Appreciation|journal=[[The Economic Journal]]|volume=108|issue=450|pages=1431–1435|year=1998|doi=10.1111/1468-0297.00350|citeseerx=10.1.1.423.1705|access-date=2010-03-22|archive-url=https://web.archive.org/web/20110927154044/http://www.paulormerod.com/pdf/economicjournal1998.pdf|archive-date=2011-09-27|url-status=dead}}</ref>
 
The Lotka–Volterra equations have a long history of use in [[Economics|economic theory]]; their initial application is commonly credited to [[Richard M. Goodwin|Richard Goodwin]] in 1965<ref name=":15">{{cite journal|last=Gandolfo|first=G.|authorlink=Giancarlo Gandolfo|title=Giuseppe Palomba and the Lotka–Volterra equations|journal=Rendiconti Lincei|volume=19|issue=4|pages=347–357|year=2008|doi=10.1007/s12210-008-0023-7|s2cid=140537163}}</ref> or 1967.<ref name=":16">{{cite book|last=Goodwin|first=R. M.|chapter=A Growth Cycle|title=Socialism, Capitalism and Economic Growth|chapter-url=https://archive.org/details/socialismcapital0000fein|chapter-url-access=registration|editor-last=Feinstein|editor-first=C. H.|publisher=[[Cambridge University Press]]|year=1967}}</ref><ref name=":17">{{cite journal|last1=Desai|first1=M.|last2=Ormerod|first2=P.|url=http://www.paulormerod.com/pdf/economicjournal1998.pdf|title=Richard Goodwin: A Short Appreciation|journal=[[The Economic Journal]]|volume=108|issue=450|pages=1431–1435|year=1998|doi=10.1111/1468-0297.00350|citeseerx=10.1.1.423.1705|access-date=2010-03-22|archive-url=https://web.archive.org/web/20110927154044/http://www.paulormerod.com/pdf/economicjournal1998.pdf|archive-date=2011-09-27|url-status=dead}}</ref>
   −
Lotka-Volterra方程在理论经济学中有很长的应用历史,最早由Richard Goodwin应用于1965<ref name=":15" /> 与1967年<ref name=":16" /><ref name=":17" />。
+
Lotka-Volterra方程在理论经济学中有很长的应用历史,最早由理查德·古德温(Richard Goodwin)应用于1965<ref name=":15" /> 与1967年<ref name=":16" /><ref name=":17" />。
   −
== Physical meaning of the equations 方程的物理意义 ==
+
== 方程的物理意义 ==
    
The Lotka–Volterra model makes a number of assumptions, not necessarily realizable in nature, about the environment and evolution of the predator and prey populations:<ref name=":18">{{Cite web|url=http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html|title=PREDATOR-PREY DYNAMICS|website=www.tiem.utk.edu|access-date=2018-01-09}}</ref>
 
The Lotka–Volterra model makes a number of assumptions, not necessarily realizable in nature, about the environment and evolution of the predator and prey populations:<ref name=":18">{{Cite web|url=http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html|title=PREDATOR-PREY DYNAMICS|website=www.tiem.utk.edu|access-date=2018-01-09}}</ref>
第136行: 第136行:  
因此,上述方程式可以理解为,捕食者种群的变化率取决于其捕杀猎物的速率减去其内在死亡(包括迁徙)率。
 
因此,上述方程式可以理解为,捕食者种群的变化率取决于其捕杀猎物的速率减去其内在死亡(包括迁徙)率。
   −
== Solutions to the equations 方程求解 ==
+
== 方程求解 ==
    
The equations have [[periodic function|periodic]] solutions and do not have a simple expression in terms of the usual [[trigonometric function]]s, although they are quite tractable.<ref name=":20">{{cite journal|last1=Steiner|first1=Antonio|last2=Gander|first2=Martin Jakob|year=1999|title=Parametrische Lösungen der Räuber-Beute-Gleichungen im Vergleich|journal=Il Volterriano|volume=7|issue=|pages=32–44|url=http://archive-ouverte.unige.ch/unige:6300/ATTACHMENT01}}</ref><ref name=":21">{{cite journal|last1=Evans|first1=C. M.|last2=Findley|first2=G. L.|title=A new transformation for the Lotka-Volterra problem|journal=Journal of Mathematical Chemistry|volume=25|issue=|pages=105–110|year=1999|doi=10.1023/A:1019172114300|s2cid=36980176}}</ref>
 
The equations have [[periodic function|periodic]] solutions and do not have a simple expression in terms of the usual [[trigonometric function]]s, although they are quite tractable.<ref name=":20">{{cite journal|last1=Steiner|first1=Antonio|last2=Gander|first2=Martin Jakob|year=1999|title=Parametrische Lösungen der Räuber-Beute-Gleichungen im Vergleich|journal=Il Volterriano|volume=7|issue=|pages=32–44|url=http://archive-ouverte.unige.ch/unige:6300/ATTACHMENT01}}</ref><ref name=":21">{{cite journal|last1=Evans|first1=C. M.|last2=Findley|first2=G. L.|title=A new transformation for the Lotka-Volterra problem|journal=Journal of Mathematical Chemistry|volume=25|issue=|pages=105–110|year=1999|doi=10.1023/A:1019172114300|s2cid=36980176}}</ref>
第394行: 第394行:  
其中''e''是欧拉数
 
其中''e''是欧拉数
   −
== See also 另请参见 ==
+
== 另请参见 ==
    
*[[Competitive Lotka–Volterra equations]]
 
*[[Competitive Lotka–Volterra equations]]
第428行: 第428行:  
* '''<font color="#ff8000"> 兰切斯特定律,有关于军事战术的微分方程组Lanchester's laws, a similar system of differential equations for military forces</font>'''
 
* '''<font color="#ff8000"> 兰切斯特定律,有关于军事战术的微分方程组Lanchester's laws, a similar system of differential equations for military forces</font>'''
   −
== Notes 备注==
+
== 备注==
    
{{Reflist|30em}}
 
{{Reflist|30em}}
   −
== References 参考文献==
+
== 参考文献==
    
*{{cite book|first=E. R.|last=Leigh|year=1968|chapter=The ecological role of Volterra's equations|title=Some Mathematical Problems in Biology}} &ndash; a modern discussion using [[Hudson's Bay Company]] data on [[lynx]] and [[hare]]s in [[Canada]] from 1847 to 1903.
 
*{{cite book|first=E. R.|last=Leigh|year=1968|chapter=The ecological role of Volterra's equations|title=Some Mathematical Problems in Biology}} &ndash; a modern discussion using [[Hudson's Bay Company]] data on [[lynx]] and [[hare]]s in [[Canada]] from 1847 to 1903.
第444行: 第444行:  
*{{cite journal|first1=J.|last1=Llibre|first2=C.|last2=Valls|author2-link= Clàudia Valls |title=Global analytic first integrals for the real planar Lotka-Volterra system|journal=J. Math. Phys.|volume=48|issue=3|pages=033507|year=2007|doi=10.1063/1.2713076|bibcode=2007JMP....48c3507L}}
 
*{{cite journal|first1=J.|last1=Llibre|first2=C.|last2=Valls|author2-link= Clàudia Valls |title=Global analytic first integrals for the real planar Lotka-Volterra system|journal=J. Math. Phys.|volume=48|issue=3|pages=033507|year=2007|doi=10.1063/1.2713076|bibcode=2007JMP....48c3507L}}
   −
== External links 相关链接 ==
+
== 相关链接 ==
    
{{Commons category}}
 
{{Commons category}}
46

个编辑

导航菜单