第22行: |
第22行: |
| | | |
| | | |
| + | The term system here has a very wide meaning; it can range from a single atom to a macroscopic system such as a [[Natural gas storage|natural gas storage tank]]. Because of this the Boltzmann distribution can be used to solve a very wide variety of problems. The distribution shows that states with lower energy will always have a higher probability of being occupied . |
| | | |
− | The term system here has a very wide meaning; it can range from a single atom to a macroscopic system such as a [[Natural gas storage|natural gas storage tank]]. Because of this the Boltzmann distribution can be used to solve a very wide variety of problems. The distribution shows that states with lower energy will always have a higher probability of being occupied .
| + | 这里的术语系统含义广泛,它可以从单个原子到宏观系统,如天然气储罐。正因为如此,波兹曼分布可以用来解决各种各样的问题。玻尔兹曼分布表明,能量较低的状态被占据的概率总是较高的。 |
| | | |
− | 这里的术语系统含义广泛, 它可以从单个原子到宏观系统,如天然气储罐。正因为如此,波兹曼分布可以用来解决各种各样的问题。玻尔兹曼分布表明,能量较低的状态被占据的概率总是较高的。
| |
| | | |
| | | |
第44行: |
第44行: |
| | | |
| |location=New York|title-link=Elementary Principles in Statistical Mechanics }}</ref> | | |location=New York|title-link=Elementary Principles in Statistical Mechanics }}</ref> |
− |
| |
− |
| |
| | | |
| | | |
| 波兹曼分布是根据路德维希·玻尔兹曼1868年在研究统计力学中气体热平衡的时候首次提出的一个公式命名的。波尔兹曼的统计工作在他1877年的论文《论热力学第二基本定理与热平衡条件的概率计算之间的关系》中得到了体现。<ref>“On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp 373-435 (Wien. Ber. 1877, 76:373-435). </ref> 在玻尔兹曼分布被发明之后,约西亚·华纳德·吉布森充分地研究了它并在1902年提出了它的一般形式。<ref name="gibbs" /> | | 波兹曼分布是根据路德维希·玻尔兹曼1868年在研究统计力学中气体热平衡的时候首次提出的一个公式命名的。波尔兹曼的统计工作在他1877年的论文《论热力学第二基本定理与热平衡条件的概率计算之间的关系》中得到了体现。<ref>“On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium” Sitzungberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp 373-435 (Wien. Ber. 1877, 76:373-435). </ref> 在玻尔兹曼分布被发明之后,约西亚·华纳德·吉布森充分地研究了它并在1902年提出了它的一般形式。<ref name="gibbs" /> |
− |
| |
− |
| |
| | | |
| | | |
第86行: |
第82行: |
| | | |
| The Boltzmann distribution is the distribution that maximizes the [[entropy]], | | The Boltzmann distribution is the distribution that maximizes the [[entropy]], |
− |
| |
| | | |
| <math>H(p_1,p_2,\cdots,p_M) = -\sum_{i=1}^{M} p_i\log_2 p_i</math> | | <math>H(p_1,p_2,\cdots,p_M) = -\sum_{i=1}^{M} p_i\log_2 p_i</math> |
− |
| |
− |
| |
| | | |
| subject to the constraint that <math>\sum {p_i {\varepsilon}_i} </math> equals a particular mean energy value (which can be proven using [[Lagrange multipliers]]). | | subject to the constraint that <math>\sum {p_i {\varepsilon}_i} </math> equals a particular mean energy value (which can be proven using [[Lagrange multipliers]]). |
| | | |
| + | 当<math>\sum {p_i {\varepsilon}_i} </math>等于平均能量值时,玻尔兹曼分布是这种情况下能让熵最大化的分布。我们可以通过拉格朗日乘数法来证明。 |
| | | |
− |
| |
− | 当<math>\sum {p_i {\varepsilon}_i} </math>等于平均能量值时,玻尔兹曼分布是这种情况下能让熵最大化的分布。我们可以通过拉格朗日乘数法来证明。
| |
| | | |
| | | |