更改

跳到导航 跳到搜索
添加4字节 、 2021年11月2日 (二) 11:12
第88行: 第88行:  
Note that we have used the fact that the phase space volume element <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math> is constant, which can be shown using [[Hamilton's equations]] (see the discussion under [[Liouville's theorem (Hamiltonian)|Liouville's theorem]]). However, since collisions do occur, the particle density in the phase-space volume <math> d^3\bf{r}</math>&nbsp;'<math> d^3\bf{p}</math> changes, so
 
Note that we have used the fact that the phase space volume element <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math> is constant, which can be shown using [[Hamilton's equations]] (see the discussion under [[Liouville's theorem (Hamiltonian)|Liouville's theorem]]). However, since collisions do occur, the particle density in the phase-space volume <math> d^3\bf{r}</math>&nbsp;'<math> d^3\bf{p}</math> changes, so
   −
where Δ''f'' is the ''total'' change in ''f''. Dividing ({{EquationNote|1}}) by <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math>&nbsp;Δ''t'' and taking the limits Δ''t'' → 0 and Δ''f'' → 0, we have{{NumBlk|2=<math>\frac{d f}{d t} = \left(\frac{\partial f}{\partial t} \right)_\mathrm{coll}</math>|3={{EquationRef|2}}}}
+
where Δ''f'' is the ''total'' change in ''f''. Dividing ({{EquationNote|1}}) by <math> d^3\bf{r}</math>&nbsp;<math> d^3\bf{p}</math>&nbsp;Δ''t'' and taking the limits Δ''t'' → 0 and Δ''f'' → 0, we have{{NumBlk|2=<math>\frac{d f}{d t} = \left(\frac{\partial f}{\partial t} \right)_\mathrm{coll}</math>|3={{EquationRef|2}}|:}}
    
The total [[differential of a function|differential]] of ''f'' is:
 
The total [[differential of a function|differential]] of ''f'' is:
596

个编辑

导航菜单