第161行: |
第161行: |
| 三体问题这个术语有时用在更一般的意义上来指涉及三个物体相互作用的任何物理问题。 | | 三体问题这个术语有时用在更一般的意义上来指涉及三个物体相互作用的任何物理问题。 |
| | | |
− | A quantum mechanical analogue of the gravitational three-body problem in classical mechanics is the helium atom, in which a helium nucleus and two electrons interact according to the inverse-square Coulomb interaction. Like the gravitational three-body problem, the helium atom cannot be solved exactly.[23]
| |
| | | |
| + | 氦原子是经典力学中引力三体问题的量子力学模拟,其中一个氦原子核和两个电子会产生反平方库仑相互作用。就像引力三体问题一样,氦原子的三体问题没有精确解。<ref>{{cite book | author=Griffiths, David J.| title=Introduction to Quantum Mechanics (2nd ed.) | publisher=Prentice Hall |year=2004 |isbn=978-0-13-111892-8 | oclc=40251748 |page=311}}</ref> |
| | | |
− | 氦原子是经典力学中引力三体问题的量子力学模拟,其中一个氦原子核和两个电子会产生反平方库仑相互作用。就像引力三体问题一样,氦原子的三体问题没有精确解。
| |
| | | |
− | In both classical and quantum mechanics, however, there exist nontrivial interaction laws besides the inverse-square force which do lead to exact analytic three-body solutions. One such model consists of a combination of harmonic attraction and a repulsive inverse-cube force.[24] This model is considered nontrivial since it is associated with a set of nonlinear differential equations containing singularities (compared with, e.g., harmonic interactions alone, which lead to an easily solved system of linear differential equations). In these two respects it is analogous to (insoluble) models having Coulomb interactions, and as a result has been suggested as a tool for intuitively understanding physical systems like the helium atom.[24][25]
| + | 然而,在经典力学和量子力学中,除了平方反力外,还存在着一些非平凡相互作用规律,这些规律可以得到精确的解析解。有一种模型是由谐波吸引和排斥反立方体力的组合而成的。<ref name="Crandall1984">{{cite journal |last1=Crandall| first1= R.|last2=Whitnell| first2=R.|last3=Bettega| first3=R.| title= Exactly soluble two-electron atomic model| journal=American Journal of Physics | volume=52 | issue= 5| pages= 438–442| year=1984 | doi=10.1119/1.13650| bibcode= 1984AmJPh..52..438C}}</ref>该模型被认为是非平凡的,因为它与一组包含奇异性的非线性微分方程组相关联(例如,与单独的谐波相互作用相比,该关联能够得到易于求解的线性微分方程组)。在这两种情况下,三体问题类似于具有库仑相互作用的(无法解释的)模型,因此,有人提出将其作为直观理解诸如氦原子之类的物理系统的工具。<ref name="Crandall1984"/><ref>{{cite journal | last= Calogero| first= F.| title= Solution of a Three-Body Problem in One Dimension| journal=Journal of Mathematical Physics| volume= 10| issue= 12| pages=2191–2196 | year=1969 | doi=10.1063/1.1664820| bibcode= 1969JMP....10.2191C}}</ref> |
| | | |
| | | |
− | 然而,在经典力学和量子力学中,除了平方反力外,还存在着一些非平凡相互作用规律,这些规律可以得到精确的解析解。有一种模型是由谐波吸引和排斥反立方体力的组合而成的。该模型被认为是非平凡的,因为它与一组包含奇异性的非线性微分方程组相关联(例如,与单独的谐波相互作用相比,该关联能够得到易于求解的线性微分方程组)。在这两种情况下,三体问题类似于具有库仑相互作用的(无法解释的)模型,因此,有人提出将其作为直观理解诸如氦原子之类的物理系统的工具。
| + | 引力三体问题也被通过广义相对论进行了研究。在物理上,相对论性的处理在引力场非常强的系统中变得非常必要,比如在黑洞的视界附近。然而,相对论性问题比牛顿力学困难得多,需要复杂的数值技术。即使是完整的两体问题(即任意质量比)在广义相对论中也没有严格的解析解。<ref>{{cite journal | last1=Musielak | first1=Z E | last2=Quarles | first2=B | title=The three-body problem | journal=Reports on Progress in Physics | volume=77 | issue=6 | pages=065901 | year=2014 | issn=0034-4885 | doi=10.1088/0034-4885/77/6/065901 | pmid=24913140| arxiv=1508.02312 | bibcode=2014RPPh...77f5901M}}</ref> |
| | | |
− | The gravitational three-body problem has also been studied using general relativity. Physically, a relativistic treatment becomes necessary in systems with very strong gravitational fields, such as near the event horizon of a black hole. However, the relativistic problem is considerably more difficult than in Newtonian mechanics, and sophisticated numerical techniques are required. Even the full two-body problem (i.e. for arbitrary ratio of masses) does not have a rigorous analytic solution in general relativity.[26]
| + | <br> |
− | | |
− | 引力三体问题也被通过广义相对论进行了研究。在物理上,相对论性的处理在引力场非常强的系统中变得非常必要,比如在黑洞的视界附近。然而,相对论性问题比牛顿力学困难得多,需要复杂的数值技术。即使是完整的两体问题(即任意质量比)在广义相对论中也没有严格的解析解。
| |
| | | |
| ==N体问题== | | ==N体问题== |