第357行: |
第357行: |
| h(r,t) \equiv | | h(r,t) \equiv |
| L^{p}h(r/L,L^yt); </math> | | L^{p}h(r/L,L^yt); </math> |
− | {{NumBlk|1=:|2=<math>h(r,t) \equiv | + | 在重标度模型中,<math>t</math>变为<math>L^yt\ </math>,<math>r</math>则为<math>r/L\ </math>。对于关联函数<math>h(r,t)\ </math>标度律({{EquationNote|1=10}}),也存在某一指数<math>p\ </math>使<math>L^p</math>成为联系原始模型和重标度模型的因子;所以有:{{NumBlk|1=:|2=<math>h(r,t) \equiv |
| L^{p}h(r/L,L^yt);</math>|3={{EquationRef|21}}}} | | L^{p}h(r/L,L^yt);</math>|3={{EquationRef|21}}}} |
| | | |
第364行: |
第364行: |
| :<math>\label{eq:22} | | :<math>\label{eq:22} |
| h(r,t)\equiv r^p G(r/t^{-1/y}) </math> | | h(r,t)\equiv r^p G(r/t^{-1/y}) </math> |
− | {{NumBlk|1=:|2=<math>h(r,t)h(r,t)\equiv r^p G(r/t^{-1/y})</math>|3={{EquationRef|22}}}} | + | 即<math>h(r,t)</math>是<math>r</math>和<math>t^{-1/y}\ </math>的<math>p</math>次齐次函数。再由齐次性表达式({{EquationNote|1=2}})有:{{NumBlk|1=:|2=<math>h(r,t)h(r,t)\equiv r^p G(r/t^{-1/y})</math>|3={{EquationRef|22}}}} |
| | | |
| with a scaling function <math>G\ .</math> Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math> The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math> | | with a scaling function <math>G\ .</math> Comparing this with ({{EquationNote|1=10}}), and recalling that the correlation length <math>\xi</math> diverges at the critical point as <math>t^{-\nu}</math> with exponent <math>\nu\ ,</math> we identify <math>p=-(d-2+\eta)</math> and <math>1/y=\nu\ .</math> The scaling law <math>(2-\eta)\nu=\gamma\ ,</math> which was a consequence of the homogeneity of form of <math>h(r,t)\ ,</math> again holds, while from <math>1/y=\nu</math> and the earlier <math>d/y=2-\alpha</math> we now have the hyperscaling law ({{EquationNote|1=17}}), <math>d\nu=2-\alpha\ .</math> |
| + | |
| + | 其中<math>G\ </math>是标度函数。与({{EquationNote|1=10}})对比,由临界点处的关联长度服从({{EquationNote|1=11}}),我们可得<math>p=-(d-2+\eta)</math>以及<math>1/y=\nu\ </math>。由此齐次性表达式<math>h(r,t)\ </math>得出的标度律<math>(2-\eta)\nu=\gamma\ </math>依然成立,且再由<math>1/y=\nu</math>和<math>d/y=2-\alpha</math>,得到超标度律({{EquationNote|1=17}})——<math>d\nu=2-\alpha\ </math>。 |
| | | |
| The block-spin picture thus yields the critical-point scaling of the thermodynamic and correlation functions, and both the <math>d</math>-independent and <math>d</math>-dependent relations among the scaling exponents. The essence of this picture is confirmed in the renormalization-group theory [19,20]. | | The block-spin picture thus yields the critical-point scaling of the thermodynamic and correlation functions, and both the <math>d</math>-independent and <math>d</math>-dependent relations among the scaling exponents. The essence of this picture is confirmed in the renormalization-group theory [19,20]. |