双重稳健估计的偏差称为二阶偏差,它取决于差分 frac {1}{ hat { p }{ n }(a _ { i } | x _ { i })}-frac {1}{ p }{ n }(a _ { i } | x _ { i })}和差分{ q } _ n (x _ i,a)-q _ n (x _ i,a)的乘积。这个特性使我们在样本容量足够大的情况下,通过使用机器学习估计器(而不是参数模型)来降低双重稳健估计器的总体偏差。米格尔 · a · 埃尔南和詹姆斯 · m · 罗宾斯。”因果推理”(2010) : 2. 链接到书-页179 | 双重稳健估计的偏差称为二阶偏差,它取决于差分 frac {1}{ hat { p }{ n }(a _ { i } | x _ { i })}-frac {1}{ p }{ n }(a _ { i } | x _ { i })}和差分{ q } _ n (x _ i,a)-q _ n (x _ i,a)的乘积。这个特性使我们在样本容量足够大的情况下,通过使用机器学习估计器(而不是参数模型)来降低双重稳健估计器的总体偏差。米格尔 · a · 埃尔南和詹姆斯 · m · 罗宾斯。”因果推理”(2010) : 2. 链接到书-页179 |