Proceedings of the European Symposium on Artificial Neural Networks ESANN 2007, pp. 471–482. It is a generalisation of earlier neural network architectures such as recurrent neural networks, liquid-state machines and echo-state networks. Reservoir computing also extends to physical systems that are not networks in the classical sense, but rather continuous systems in space and/or time: e.g. a literal "bucket of water" can serve as a reservoir that performs computations on inputs given as perturbations of the surface. The resultant complexity of such recurrent neural networks was found to be useful in solving a variety of problems including language processing and dynamic system modeling. However, training of recurrent neural networks is challenging and computationally expensive. Reservoir computing reduces those training-related challenges by fixing the dynamics of the reservoir and only training the linear output layer. | Proceedings of the European Symposium on Artificial Neural Networks ESANN 2007, pp. 471–482. It is a generalisation of earlier neural network architectures such as recurrent neural networks, liquid-state machines and echo-state networks. Reservoir computing also extends to physical systems that are not networks in the classical sense, but rather continuous systems in space and/or time: e.g. a literal "bucket of water" can serve as a reservoir that performs computations on inputs given as perturbations of the surface. The resultant complexity of such recurrent neural networks was found to be useful in solving a variety of problems including language processing and dynamic system modeling. However, training of recurrent neural networks is challenging and computationally expensive. Reservoir computing reduces those training-related challenges by fixing the dynamics of the reservoir and only training the linear output layer. |