<math>t</math>和<math>t^{\prime}</math>的微观态之间的相关性由它们的矢量乘积定义:<math>\begin{eqnarray}{C}_{{tt}^{\prime} }=\delta {\boldsymbol{S}}{\left(t\right)}^{{\rm{T}}}\cdot \delta {\boldsymbol{S}}(t^{\prime} )=\displaystyle \sum _{i=1}^{N}\delta {S}_{i}(t)\delta {S}_{i}(t^{\prime} )\end{eqnarray}</math>。以<math>{C}_{tt}^{\prime} </math>作为其元素,我们可以得到一个<math>M×M</math>的微观态相关矩阵:<math>\begin{eqnarray}{\boldsymbol{C}}={C}_{0}{{\boldsymbol{A}}}^{{\rm{T}}}\cdot {\boldsymbol{A}}\end{eqnarray}</math>,其轨迹<math>Tr\boldsymbol{C}={\sum }_{t=1}^{M}{C}_{tt}={C}_{0}</math>。 | <math>t</math>和<math>t^{\prime}</math>的微观态之间的相关性由它们的矢量乘积定义:<math>\begin{eqnarray}{C}_{{tt}^{\prime} }=\delta {\boldsymbol{S}}{\left(t\right)}^{{\rm{T}}}\cdot \delta {\boldsymbol{S}}(t^{\prime} )=\displaystyle \sum _{i=1}^{N}\delta {S}_{i}(t)\delta {S}_{i}(t^{\prime} )\end{eqnarray}</math>。以<math>{C}_{tt}^{\prime} </math>作为其元素,我们可以得到一个<math>M×M</math>的微观态相关矩阵:<math>\begin{eqnarray}{\boldsymbol{C}}={C}_{0}{{\boldsymbol{A}}}^{{\rm{T}}}\cdot {\boldsymbol{A}}\end{eqnarray}</math>,其轨迹<math>Tr\boldsymbol{C}={\sum }_{t=1}^{M}{C}_{tt}={C}_{0}</math>。 |