更改

跳到导航 跳到搜索
删除3字节 、 2023年7月23日 (日) 01:30
第182行: 第182行:  
设定<math>b=2 </math>,<math>c=4 </math>,<math>a\in\left \{ 0.37,0.43 \right \} </math>间隔为0.001,这里只是基于<math>x </math>的时间序列建立状态网络。OPN方法具体操作如下:输入时间序列<math>x=\left\{x_1, x_2, \ldots, x_n\right\} </math>,需要将输入嵌入到一个滞后时间为<math>\tau </math>的<math>D </math>维空间中,
 
设定<math>b=2 </math>,<math>c=4 </math>,<math>a\in\left \{ 0.37,0.43 \right \} </math>间隔为0.001,这里只是基于<math>x </math>的时间序列建立状态网络。OPN方法具体操作如下:输入时间序列<math>x=\left\{x_1, x_2, \ldots, x_n\right\} </math>,需要将输入嵌入到一个滞后时间为<math>\tau </math>的<math>D </math>维空间中,
 
其中<math>v_i=\left\{x_i, x_{i+\tau},\ldots  x_{i+(D-1) \tau}\right\} </math>,需要根据<math>v_i </math>中的数值进行降序排序重新编号为<math>s_i=\left\{\pi_1,\pi_2, \cdots \pi_D\right\} </math>, 其中,<math>\pi_j \in\{1,2, \ldots, D\} </math>,节点序列<math>s </math>表示为<math>s=\left\{s_1, s_2, \ldots, s_{n-D+1}\right\} </math>,序列<math>s </math>中不重复的向量构成最终的状态图中的节点,节点<math>i </math>指向节点<math>j </math>的权重表示为<math>s </math>序列中状态<math>s_i </math>后面为状态<math>s_j </math>的次数。对边权进行归一化就可以得到节点间的状态转移概率,然后基于Hoel等人提出网络的有效信息度量方法进行实验,比较系统的确定性、简并性、有效性等指标随着参数<math>a </math>的变化,如下图所示。
 
其中<math>v_i=\left\{x_i, x_{i+\tau},\ldots  x_{i+(D-1) \tau}\right\} </math>,需要根据<math>v_i </math>中的数值进行降序排序重新编号为<math>s_i=\left\{\pi_1,\pi_2, \cdots \pi_D\right\} </math>, 其中,<math>\pi_j \in\{1,2, \ldots, D\} </math>,节点序列<math>s </math>表示为<math>s=\left\{s_1, s_2, \ldots, s_{n-D+1}\right\} </math>,序列<math>s </math>中不重复的向量构成最终的状态图中的节点,节点<math>i </math>指向节点<math>j </math>的权重表示为<math>s </math>序列中状态<math>s_i </math>后面为状态<math>s_j </math>的次数。对边权进行归一化就可以得到节点间的状态转移概率,然后基于Hoel等人提出网络的有效信息度量方法进行实验,比较系统的确定性、简并性、有效性等指标随着参数<math>a </math>的变化,如下图所示。
[[文件:指标变化.png|居中|627x627像素|替代=网络的有效信息度量方法|系统的确定性、简并性以及有效系数随着参数的变化|缩略图]]
+
[[文件:指标变化.png|居中|627x627像素|替代=网络的有效信息度量方法|系统的确定性、简并性以及有效系数随参数的变化|缩略图]]
 
通过实验比较发现,随着参数<math>a </math>的增大,确定性首先经历了短暂的上升,随后在第一次分叉后立即大幅下降,然后逐渐上升在周期加倍级联开始前达到局部峰值,过了该点,确定性急剧崩溃。一般来说,混沌动力学与较低水平的确定性呈相关关系。此外,简并性和有效信息的曲线变化和确定性曲线变化保持一致。然而,对于因果涌现曲线的变化没有什么有趣现象,它在一个相对恒定的值附近往复振荡,其中存在一个明显的例外,它在周期加倍级联开始时暴跌,如下图所示。
 
通过实验比较发现,随着参数<math>a </math>的增大,确定性首先经历了短暂的上升,随后在第一次分叉后立即大幅下降,然后逐渐上升在周期加倍级联开始前达到局部峰值,过了该点,确定性急剧崩溃。一般来说,混沌动力学与较低水平的确定性呈相关关系。此外,简并性和有效信息的曲线变化和确定性曲线变化保持一致。然而,对于因果涌现曲线的变化没有什么有趣现象,它在一个相对恒定的值附近往复振荡,其中存在一个明显的例外,它在周期加倍级联开始时暴跌,如下图所示。
 
[[文件:恒定值.png|居中|420x420像素|因果涌现随参数的变化|替代=参数恒定值震荡|缩略图]]
 
[[文件:恒定值.png|居中|420x420像素|因果涌现随参数的变化|替代=参数恒定值震荡|缩略图]]
138

个编辑

导航菜单