更改

跳到导航 跳到搜索
大小无更改 、 2024年8月31日 (星期六)
第442行: 第442行:  
在该文章中,作者使用[[贪婪算法]]来粗粒化网络,然而对于大规模网络来说,这种算法效率很低。随后,Griebenow等<ref>Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>提出了一种基于[[谱聚类]]的方法来识别[[偏好依附网络]]中的因果涌现。相比[[贪婪算法]]以及[[梯度下降算法]],[[谱聚类算法]]的计算时间更少,同时找到的宏观网络的因果涌现也更加显著。
 
在该文章中,作者使用[[贪婪算法]]来粗粒化网络,然而对于大规模网络来说,这种算法效率很低。随后,Griebenow等<ref>Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>提出了一种基于[[谱聚类]]的方法来识别[[偏好依附网络]]中的因果涌现。相比[[贪婪算法]]以及[[梯度下降算法]],[[谱聚类算法]]的计算时间更少,同时找到的宏观网络的因果涌现也更加显著。
   −
===在生物系统上的应用===
+
===在生物网络上的应用===
 
进一步,Klein等人将[[复杂网络中的因果涌现]]方法扩展到了更多的生物网络中。前文已经指出,[[生物网络]]具有更大的噪音,这使得我们很难理解其内部的运作原理,这种噪音一方面来自系统的固有噪音,另一方面是由于测量或观察引入的。Klein等<ref>Klein B, Swain A, Byrum T, et al. Exploring noise, degeneracy and determinism in biological networks with the einet package[J]. Methods in Ecology and Evolution, 2022, 13(4): 799-804.</ref>进一步探索了生物网络中的噪声、[[简并性]]和[[确定性]]三者之间的关系以及具体含义,得出了一些有趣的结论。
 
进一步,Klein等人将[[复杂网络中的因果涌现]]方法扩展到了更多的生物网络中。前文已经指出,[[生物网络]]具有更大的噪音,这使得我们很难理解其内部的运作原理,这种噪音一方面来自系统的固有噪音,另一方面是由于测量或观察引入的。Klein等<ref>Klein B, Swain A, Byrum T, et al. Exploring noise, degeneracy and determinism in biological networks with the einet package[J]. Methods in Ecology and Evolution, 2022, 13(4): 799-804.</ref>进一步探索了生物网络中的噪声、[[简并性]]和[[确定性]]三者之间的关系以及具体含义,得出了一些有趣的结论。
  
786

个编辑

导航菜单