更改

跳到导航 跳到搜索
无编辑摘要
第1行: 第1行:  
我们先简单回顾一下马尔科夫矩阵是什么。它是一种square matrix,行列数一样,且满足每一行和为1的条件。
 
我们先简单回顾一下马尔科夫矩阵是什么。它是一种square matrix,行列数一样,且满足每一行和为1的条件。
   −
而马尔科夫链指的是一个n维的状态的序列<math>\{x_t\ = 1, ..., n\}_{t}</math>,每一步的状态转换都有马尔科夫矩阵<math>P</math>决定,即<math>x_{t+1} = P x_t</math>.
+
而马尔科夫链指的是一个n维的状态的序列<math>x_t\ = \{1, ..., n\}_{t}</math>,每一步的状态转换都有马尔科夫矩阵<math>P</math>决定,即<math>x_{t+1} = P x_t</math>.
    
<math>P</math>的每一行对应的每个状态转移到其他状态的概率。比如当<math>x_t</math>等于第一个状态的时候,<math>P</math>的第一行展示了<math>x_{t+1}</math>状态的概率。
 
<math>P</math>的每一行对应的每个状态转移到其他状态的概率。比如当<math>x_t</math>等于第一个状态的时候,<math>P</math>的第一行展示了<math>x_{t+1}</math>状态的概率。
第72行: 第72行:  
由此公式我们能获得一个直观上的说法:当马尔科夫矩阵存在block结构,或者状态明显可被分成几种partition的时候,该矩阵就会lumpable,如图一中的<math>\bar{P}</math>所示。
 
由此公式我们能获得一个直观上的说法:当马尔科夫矩阵存在block结构,或者状态明显可被分成几种partition的时候,该矩阵就会lumpable,如图一中的<math>\bar{P}</math>所示。
   −
但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图一中的<math>P</math>,<math>P = P_1 + P_2, P_1^TP_2 = 0</math>)。
+
但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图一中的<math>P</math>,<math>P = P_1 + P_2</math>,<math>P_1^TP_2 = 0</math>)。
         −
===针对Lumpability的粗粒化方法===
+
====基于Lumpability的粗粒化方法====
    
我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。
 
我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。
第119行: 第119行:  
=因果态=
 
=因果态=
   −
因果态相关详情请参照[[因果态]]词条。
+
因果态相关详情请参照[[计算力学]]词条。
     
97

个编辑

导航菜单