更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
计算力学
(查看源代码)
2024年9月13日 (五) 07:42的版本
添加27字节
、
2024年9月13日 (星期五)
→混沌动力学实例
第211行:
第211行:
为了在有限观测数据的条件下,得到合适的模型,作者给出了如下算法逐层构建机器:
为了在有限观测数据的条件下,得到合适的模型,作者给出了如下算法逐层构建机器:
−
1.
在最低水平上,设定0级模型为描述数据本身,即M
<
sub>0</sub
>=s
<sub>1
</
sub
>
s
<
sub
>
2</sub>s<sub>3
</
sub
>
...
;
+
1.
在最低水平上,设定0级模型为描述数据本身,即
<
math
>
M_0
=s</
math
>
,将初始层级设置为比0级高一级,
<
math
>
l=1
</
math
>;
2. 从更低模型重构模型M<sub>l</sub>=M<sub>l-1</sub>/~,其中~表示l级上的因果等价类;操作的含义是,在l-1级上被区别对待的状态在l级上可以被视为同一个因果态。此时S和T都更新了;
2. 从更低模型重构模型M<sub>l</sub>=M<sub>l-1</sub>/~,其中~表示l级上的因果等价类;操作的含义是,在l-1级上被区别对待的状态在l级上可以被视为同一个因果态。此时S和T都更新了;
第222行:
第222行:
==混沌动力学实例==
==混沌动力学实例==
−
接下来将采用具体的方法来演示如何将计算力学的理论付诸实践。要演示的是混沌动力学中的逻辑斯谛映射
(logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,当它以吸引子上的初始条件启动时,可以让观察到的过程是平稳的。轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。
+
接下来将采用具体的方法来演示如何将计算力学的理论应用于实际案例,要演示的是混沌动力学中的逻辑斯谛映射
(logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,当它以吸引子上的初始条件启动时,可以让观察到的过程是平稳的。轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。
[[文件:逻辑斯谛曲线.jpg|居中|无框|400x400像素]]
[[文件:逻辑斯谛曲线.jpg|居中|无框|400x400像素]]
−
上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>
时系统会出现混沌现象。
+
上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>
时会出现混沌现象。
==参考文献==
==参考文献==
刘易明
275
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本