第1,050行: |
第1,050行: |
| </math> | | </math> |
| | | |
− | 而[[矩阵的秩]]衡量的是矩阵P非退化(也就是可逆)的程度,与Degeneracy有着类似的效果。
| + | The [[Rank of a Matrix]] measures the degree to which matrix P is non degenerate (i.e. reversible), similar to the effect of degeneracy. |
− | | |
− | 而当[math]\alpha\rightarrow 2[/math],则[math]\Gamma_{\alpha}[/math]就退化成了矩阵P的[[Frobinius范数]]的平方,即:
| |
| | | |
| + | And when [math]\alpha\rightarrow 2[/math], then [math]\Gamma_{\alpha}[/math] degenerates into the square of the [[Frobinius Norm]] of matrix P, that is: |
| <math> | | <math> |
| ||P||_F^2=\sum_{i=1}^N\sigma_i^{2} | | ||P||_F^2=\sum_{i=1}^N\sigma_i^{2} |
− | </math> 这一指标衡量的是矩阵P的确定性的程度,这是因为只有当矩阵P中的所有行向量都是[[独热向量]](one-hot)的时候,[math]||P||_F[/math]才会最大,因此它与Determinism有着类似的衡量效果。 | + | </math> This indicator measures the degree of certainty of matrix P, because only when all row vectors in matrix P are [[One-hot Vectors]], [math]||P||_F[/math] will be maximized. Therefore, it has a similar measurement effect to Determinism. |
| + | |
| + | So, when [math]\alpha\in(0,2)[/math] changes continuously, [math]\Gamma_{\alpha}[/math] can switch between degeneracy and determinacy. Normally, we take [math]\alpha=1[/math], which allows [math]\Gamma_{\alpha}[/math] to achieve a balance between determinacy and degeneracy. |
| | | |
− | 所以,当[math]\alpha\in(0,2)[/math]连续变化的时候,[math]\Gamma_{\alpha}[/math]就可以在简并性与确定性二者之间切换了。通常情况下,我们取[math]\alpha=1[/math],这可以让[math]\Gamma_{\alpha}[/math]能够在确定性与简并性之间达到一种平衡。
| + | In reference <ref name="zhang_reversibility" />, the authors demonstrated an approximate relationship between EI and dynamic reversibility [math]\Gamma_{\alpha}[/math]: |
| | | |
− | 在文献<ref name="zhang_reversibility" />中,作者们证明了EI与动力学可逆性[math]\Gamma_{\alpha}[/math]之间存在着一种近似的关系:
| |
| | | |
| <math> | | <math> |
第1,088行: |
第1,088行: |
| |{{EquationRef|GJSD}}}}Among them, [math]P_i,i\in[1,m][/math]is a set of probability distribution vectors, m is their dimension, and [math]\pi=(\pi_1,\pi_2,\cdots,\pi_n)[/math] is a set of weights that satisfy:[math]\pi_i\in[0,1],\forall i\in[1,n][/math]和[math]\sum_{i=1}^n\pi_i=1[/math]. | | |{{EquationRef|GJSD}}}}Among them, [math]P_i,i\in[1,m][/math]is a set of probability distribution vectors, m is their dimension, and [math]\pi=(\pi_1,\pi_2,\cdots,\pi_n)[/math] is a set of weights that satisfy:[math]\pi_i\in[0,1],\forall i\in[1,n][/math]和[math]\sum_{i=1}^n\pi_i=1[/math]. |
| | | |
− | 通过与公式{{EquationNote|tow_terms}}比较,不难发现,当[math]\pi_i=\frac{1}{n}[/math],则[math]JSD_{\pi}[/math]就退化为EI了。
| + | By comparing with formula {{EquationNote|tow_terms}}, it is not difficult to find that when [math]\pi_i=\frac{1}{n}[/math], [math]JSD_{\pi}[/math] degenerates into EI. |
| | | |
| 在文献<ref name="GJSD">{{cite conference|author1=Erik Englesson|author2=Hossein Azizpour|title=Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels|conference=35th Conference on Neural Information Processing Systems (NeurIPS 2021)|year=2021}}</ref>中,作者们讨论了广义JS散度在分类多样性度量方面的应用。因此,EI也可以理解为是对行向量多样化程度的一种度量。 | | 在文献<ref name="GJSD">{{cite conference|author1=Erik Englesson|author2=Hossein Azizpour|title=Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels|conference=35th Conference on Neural Information Processing Systems (NeurIPS 2021)|year=2021}}</ref>中,作者们讨论了广义JS散度在分类多样性度量方面的应用。因此,EI也可以理解为是对行向量多样化程度的一种度量。 |