更改

跳到导航 跳到搜索
删除2,382字节 、 2024年9月19日 (星期四)
第38行: 第38行:       −
上图为以智能体为中心的环境视图:宇宙可以被视为一个确定性动力系统(Deterministic Dynamical Systems,简称DS)。每个智能体所看到的环境是一个由所有其他智能体组成的随机动力系统(SDS)。其表观随机性源于是内在的随机性和有限的计算资源。每个智能体本身也是一个随机动力系统,因为它可能会从其基层和环境刺激中采样或受到无法控制的随机性困扰。基层代表支持和限制信息处理、模型构建和决策的可用资源。箭头表示信息流入和流出智能体的方向。
+
上图为以智能体为中心的环境视图:宇宙可以被视为一个确定性动力系统(Deterministic Dynamical Systems,简称DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。每个智能体所看到的环境是一个由所有其他智能体组成的随机动力系统(SDS)。其表观随机性源于是内在的随机性和有限的计算资源。每个智能体本身也是一个随机动力系统,因为它可能会从其基层和环境刺激中采样或受到无法控制的随机性困扰。基层代表支持和限制信息处理、模型构建和决策的可用资源。箭头表示信息流入和流出智能体的方向。
    
智能体面临的基本问题是基于对隐藏环境状态的建模和选择可能的行动来预测未来的感官输入。设计这样一个原型宇宙的人面临的问题是如何判断智能体是否已适应环境及其适应方式。这需要一个量化的理论来描述智能体如何处理信息和构建模型。
 
智能体面临的基本问题是基于对隐藏环境状态的建模和选择可能的行动来预测未来的感官输入。设计这样一个原型宇宙的人面临的问题是如何判断智能体是否已适应环境及其适应方式。这需要一个量化的理论来描述智能体如何处理信息和构建模型。
第60行: 第60行:  
在下图中,展示了柯式复杂度和统计复杂度在从简单周期性到理想随机的过程中的差异。如图(a)所示,确定性复杂性是过程中的理想随机度的单调递增函数,它由过程的香农熵率决定。相反,统计复杂度在两个极端点上均为零,并在中间达到最大值(见图(b))。在中等随机度的“复杂”过程是有序和随机计算元素的组合。组成过程的不可简约组件越多,过程就越“复杂”。
 
在下图中,展示了柯式复杂度和统计复杂度在从简单周期性到理想随机的过程中的差异。如图(a)所示,确定性复杂性是过程中的理想随机度的单调递增函数,它由过程的香农熵率决定。相反,统计复杂度在两个极端点上均为零,并在中间达到最大值(见图(b))。在中等随机度的“复杂”过程是有序和随机计算元素的组合。组成过程的不可简约组件越多,过程就越“复杂”。
 
[[文件:复杂度比较.jpg|居中|无框|600x600像素]]
 
[[文件:复杂度比较.jpg|居中|无框|600x600像素]]
      
图(a)为柯式复杂度,是对信息源不可预测程度的度量。它表示可以通过香农熵率来衡量的随机性程度。图 (b) 统计复杂统计基于这样的观点:随机性在统计上是简单的:一个理想的随机过程具有零统计复杂度。在另一端,简单的周期性过程具有较低的统计复杂度。复杂过程在这些极端之间产生,并且是可预测机制和随机机制的混合。
 
图(a)为柯式复杂度,是对信息源不可预测程度的度量。它表示可以通过香农熵率来衡量的随机性程度。图 (b) 统计复杂统计基于这样的观点:随机性在统计上是简单的:一个理想的随机过程具有零统计复杂度。在另一端,简单的周期性过程具有较低的统计复杂度。复杂过程在这些极端之间产生,并且是可预测机制和随机机制的混合。
  −
===复杂度目标===
  −
  −
经过演化,因果链能形成形式上的闭环(closure),这里闭环在后文的因果态里,是指因果态在所有有效态中,统计复杂度最小等特征和属性。在管理学中,类似于使用组织行为学的知识,构建特定的反应链,从而完成特定目标。
  −
[[文件:复杂度-Pre-announcement-202409141.png|替代=复杂度-预申明|居中|无框|403x403像素|复杂度-预申明]]
  −
从图上最下面两个椭圆出发,右边的椭圆标注的周期可以是秩序,左边的椭圆标注的均质贝努利可以是随机,是最大熵状态,他们能结合出上方的有限型子移位吗?如果后文的“模式重构”也可应用于此处,显然也是可行的。原始文献<ref name=":1"></ref>当中共介绍了24种计算模型,从有限和无限、描述性和能力范围4个维度做了刻画,完成了相应的复杂度目标绘制。
  −
  −
几乎所有自然当中的时间相关系统,经过复杂度的划分和优化,再通过计算力学对结构的检验和测量,能展现出多尺度的涌现属性和特征。
      
==因果态==
 
==因果态==
第76行: 第67行:  
===因果态的定义===
 
===因果态的定义===
   −
在计算力学中,宇宙被视为一个确定性动力系统(DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。由于系统内的智能体的计算资源有限,无法测量和预测其内外部环境的所有行为,这些不能预测的部分对智能体来说就相当于是随机扰动,所以智能体被视为一个随机动力系统(SDS)。智能体试图构建和维持一个对其环境具有最大预测能力的内部模型,以提高其自身对环境的适应性和生存能力。
+
智能体对环境的测量精度一般都是有限的,测量结果只能描述环境的“隐藏状态”,智能体需要对测量结果粗粒化后才能识别“隐藏状态”中的斑图。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} </math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
 
  −
智能体对外部环境的测量精度一般都是有限的,测量结果只能描述外部环境的“模糊状态”,智能体需要对测量结果粗粒化后才能识别“模糊状态”中的模式。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} </math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
      
按照一定的划分方法( partition)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\overleftarrow{S}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列粗粒化后得到的宏观态。
 
按照一定的划分方法( partition)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\overleftarrow{S}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列粗粒化后得到的宏观态。
第84行: 第73行:  
上图为某种划分方法的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类有效态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。
 
上图为某种划分方法的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类有效态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。
   −
用来划分集合<math> \overset{\leftarrow}{S}</math>的映射可以有很多种,若某一种划分方法能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分。为了找到这种最优的划分,需要定义因果态的概念,因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的模式,并且这种模式不随时间发生变化。形式化定义为:对于任意的时间点<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^←  </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^←  </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。
+
用来划分集合<math> \overset{\leftarrow}{S}</math>的映射可以有很多种,若某一种划分方法能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分。为了找到这种最优的划分,需要定义因果态的概念,因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时间点<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^←  </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^←  </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
如上图所示,在<math>t_9</math>和<math>t_{13}</math>时刻分别对应一个状态,这两个状态处于相同的因果态,因为对未来的预测具有相同的分布;在<math>t_{11}</math>时刻的状态,则与<math>t_9</math>和<math>t_{13}</math>时刻处于不同的因果态。
 
如上图所示,在<math>t_9</math>和<math>t_{13}</math>时刻分别对应一个状态,这两个状态处于相同的因果态,因为对未来的预测具有相同的分布;在<math>t_{11}</math>时刻的状态,则与<math>t_9</math>和<math>t_{13}</math>时刻处于不同的因果态。
第105行: 第94行:  
(2)最小复杂度————在相同预测能力的前提下,因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的统计复杂度最小:设<math>\hat{\mathcal{R}} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>,都有<math>C_\mu(\hat{\mathcal{R}})\geq C_\mu(\mathcal{S}) </math>。
 
(2)最小复杂度————在相同预测能力的前提下,因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的统计复杂度最小:设<math>\hat{\mathcal{R}} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>,都有<math>C_\mu(\hat{\mathcal{R}})\geq C_\mu(\mathcal{S}) </math>。
   −
上文中已经介绍了柯式复杂度和统计复杂度的基本概念,如果<math>s^L </math>表示对过程的测量结果的前<math>L </math>个序列,那么它们之间的关系可以近似的表示为:
+
结合本条性质,公式<math>K(s^L )≈C_μ (s^L )+h_μ L </math>中求<math>C_μ (s^L ) </math>就是求<math>s^L </math>对应的因果态的统计复杂度,也就是说想要计算<math>C_μ (s^L ) </math>需要先找到<math>s^L </math>对应的因果态。上式也可以理解为:序列<math>s^L </math>的总信息量≈被归纳的因果态信息量+放弃归纳的随机信息量
 
  −
<math>K(s^L )≈C_μ (s^L )+h_μ L </math>
  −
 
  −
如果在已确定描述语言(程序)的情况下,柯式复杂度<math>K(s^L ) </math>可以理解为描述<math>s^L </math>所用的总信息量。
  −
 
  −
<math>h_μ </math>为香农熵率,是信息不确定性程度的归一化指标,信息的不确定性越高,香农熵率越大。<math>h_μ </math>在这里可以理解为误差率, 则<math>h_μ L </math>为允许损失的随机信息量。
  −
 
  −
统计复杂度<math>C_μ (s^L ) </math>可以理解为允许存在误差率<math>h_μ </math>的情况下,描述<math>s^L </math>所用的最少信息量。
  −
 
  −
结合本条性质,求<math>C_μ (s^L ) </math>就是求<math>s^L </math>对应的因果态的统计复杂度,也就是说想要计算<math>C_μ (s^L ) </math>需要先找到<math>s^L </math>对应的因果态。
  −
 
  −
那么公式可以解释为:序列<math>s^L </math>的总信息量≈被归纳的因果态信息量+放弃归纳的随机信息量
      
(3)最小随机性————在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小:设<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>,都有<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。
 
(3)最小随机性————在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小:设<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>,都有<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。
第127行: 第104行:  
Simplicity,Journal of Statistical Physics,104(3/4).817-879.</ref>,里面有因果态更多的性质和对应的形式化证明过程。
 
Simplicity,Journal of Statistical Physics,104(3/4).817-879.</ref>,里面有因果态更多的性质和对应的形式化证明过程。
   −
==模式重构机器==
+
==斑图重构机器==
   −
智能体如何处理测量结果才能识别其中因果态呢?为了解决这个问题,计算力学建立了名为模式重构机器(ϵ-machine)的模型,它可以重构测量结果中的序列,去除随机噪音后识别其中的因果态。模式重构机器的大小可以用统计复杂度衡量,它的形式化定义可以用公式表示为<math>M=(\mathcal{S},T)</math>,其中<math>T</math>为状态到状态映射的集合,满足<math>S_{t+1}=TS_t</math>,<math>S</math>为集合<math>\mathcal{S} </math>中的任意一个因果态,它类似于一个粗粒化后的宏观动力学。<math>T_{ij}^{\left ( s \right )}</math>为两个因果态<math>S_i</math>和<math>S_j</math>之间的因果态转移概率映射,<math>T_{ij}^{(s)}\equiv\mathrm{P}(\mathcal{S}'=\mathcal{S}_j,\stackrel{\to}{S}^1=s|\mathcal{S}=\mathcal{S}_i)</math>。每个[math]\displaystyle{ \mathcal{S} }[/math]都有<math>\epsilon</math>函数和<math>T</math>函数,这两个函数可以组成一个有序对<math>\left \{ \epsilon,T \right \}</math>,通过学习<math>\epsilon</math>和<math>T</math>函数可以提高机器识别因果态的准确度。
+
智能体如何处理测量结果才能识别其中因果态呢?为了解决这个问题,计算力学建立了名为斑图重构机器(ϵ-machine)的模型,它可以重构测量结果中的序列,去除随机噪音后识别其中的因果态。斑图重构机器的大小可以用统计复杂度衡量,它的形式化定义可以用公式表示为<math>M=(\mathcal{S},T)</math>,其中<math>T</math>为状态到状态映射的集合,满足<math>S_{t+1}=TS_t</math>,<math>S</math>为集合<math>\mathcal{S} </math>中的任意一个因果态,它类似于一个粗粒化后的宏观动力学。<math>T_{ij}^{\left ( s \right )}</math>为两个因果态<math>S_i</math>和<math>S_j</math>之间的因果态转移概率映射,<math>T_{ij}^{(s)}\equiv\mathrm{P}(\mathcal{S}'=\mathcal{S}_j,\stackrel{\to}{S}^1=s|\mathcal{S}=\mathcal{S}_i)</math>。每个[math]\displaystyle{ \mathcal{S} }[/math]都有<math>\epsilon</math>函数和<math>T</math>函数,这两个函数可以组成一个有序对<math>\left \{ \epsilon,T \right \}</math>,通过学习<math>\epsilon</math>和<math>T</math>函数可以提高机器识别因果态的准确度。
   −
如果将模型构建视为一个动态过程,那么在模型构建和完善过程中,有两个量度——香农熵率<math>h_μ </math>和统计复杂度<math>C_μ  </math>,可以分别用来监测智能体模型的预测能力和模型大小。由于外部环境实际熵率与智能体内部模型的熵率之间的绝对差异决定了智能体的预测误差率,因此模型的熵率越接近外部环境的熵率,智能体的生存机会就越高。但这种生存能力是有代价的,这个代价由智能体在进行预测时必须投入的计算资源决定的,这种代价的量度就是模型的统计复杂度。
+
如果将模型构建视为一个动态过程,那么在模型构建和完善过程中,它的两个量化指标香农熵率<math>h_μ </math>和统计复杂度<math>C_μ  </math>可以分别用来监测智能体模型的预测能力和模型大小。由于外部环境实际熵率与智能体内部模型的熵率之间的绝对差异决定了智能体的预测误差率,因此模型的熵率越接近外部环境的熵率,智能体的生存机会就越高。但这种生存能力是有代价的,这个代价由智能体在进行预测时必须投入的计算资源决定的,这种代价的量度就是模型的统计复杂度。
    
==模型分层重构法==
 
==模型分层重构法==
第145行: 第122行:     
===模型重构算法===
 
===模型重构算法===
上面介绍了模式重构机器,是智能体识别因果态的一种方式。若结合模型创新的概念,就可以给出模式重构机器的完整定义:模式重构机器(ϵ-machine)是能够用最少的计算资源对测量结果进行有限描述同时复杂度最小的模型。模型的算法步骤如下:
+
上面介绍了斑图重构机器,是智能体识别因果态的一种方式。若结合模型创新的概念,就可以给出斑图重构机器的完整定义:斑图重构机器(ϵ-machine)是能够用最少的计算资源对测量结果进行有限描述同时复杂度最小的模型。模型的算法步骤如下:
    
1. 在最低水平上,设定0级模型为描述数据本身,即<math>M_0=s</math>,将初始层级<math>l</math>设置为比0级高一级,即<math>l=1</math>;
 
1. 在最低水平上,设定0级模型为描述数据本身,即<math>M_0=s</math>,将初始层级<math>l</math>设置为比0级高一级,即<math>l=1</math>;
275

个编辑

导航菜单