更改

跳到导航 跳到搜索
添加1,287字节 、 2024年9月19日 (星期四)
第135行: 第135行:     
==混沌动力学实例==
 
==混沌动力学实例==
 +
 +
=== 逻辑斯谛映射 ===
 
接下来将采用具体的方法来演示如何将计算力学的理论应用于实际案例,要演示的是混沌动力学中的逻辑斯谛映射(logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。
 
接下来将采用具体的方法来演示如何将计算力学的理论应用于实际案例,要演示的是混沌动力学中的逻辑斯谛映射(logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。
 
[[文件:逻辑斯谛曲线.jpg|居中|无框|300x300px|替代=]]
 
[[文件:逻辑斯谛曲线.jpg|居中|无框|300x300px|替代=]]
 
上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。
 
上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。
   −
===子实例一===
+
=== 统计复杂度与香农熵率的关系 ===
 +
[[文件:复杂度-熵率图.jpg|居中|无框|600x600像素]]
 +
上图(a)为逻辑斯谛映射中统计复杂度<math>C_μ  </math>与香农熵率<math>H(L)/L </math>的关系,三角形表示<math>(C_μ ,H(L)/L) </math>的大概位置,对应非线性参数<math>r</math>的 193 个取值,其中子序列长度<math>L=16 </math>,覆盖部分实验数据的粗实线是<math>C_μ =0 </math>时对<math>H(L)/L </math>得出的分析曲线。本图表现两个重要特征。第一个特征是熵的极值导致零复杂度,也就是说在<math>H(L)/L=0 </math>处最简单的周期过程和在<math>H(L)/L=1 </math>处最随机的过程在统计上都是简单的,它们都具有零复杂度,因为它们是由具有单一状态的斑图重构机器描述的。第二个特征是在两个极端情况之间,过程明显更为复杂,在临界熵值<math>H_c </math>附近出现明显峰值(此处<math>r=3.5699...</math>),小于<math>H_c </math>数据集在呈周期性(包括在混沌区域也呈周期性的参数)的参数下产生,大于<math>H_c </math>数据集在呈混沌的参数下产生。本图可以对照统计复杂度小节中的图(b)理解。
 +
 
 +
上图(b)
 +
 
 +
===子实例一,===
    
文献<ref name=":1"></ref>中关于层次学习专门开了第五章,下面有4小节。前面两小节分别讲了混沌和不确定3-4个例子,都有着广泛的借鉴意义。
 
文献<ref name=":1"></ref>中关于层次学习专门开了第五章,下面有4小节。前面两小节分别讲了混沌和不确定3-4个例子,都有着广泛的借鉴意义。
275

个编辑

导航菜单