更改

跳到导航 跳到搜索
第601行: 第601行:  
马尔科夫链的粗粒化不仅要对状态空间做,也要对转移矩阵做,也就是根据状态的分组简化原转移矩阵以得到新的更小的转移矩阵。除此之外,还要对状态向量做约简。因此,一个完整的粗粒化过程需要同时考虑状态、转移矩阵、状态向量的粗粒化。于是,这就引出了一个新的问题,即状态分组得到的新马尔科夫链中的转移概率应该如何计算?同时,归一化条件是否能够得到保证?
 
马尔科夫链的粗粒化不仅要对状态空间做,也要对转移矩阵做,也就是根据状态的分组简化原转移矩阵以得到新的更小的转移矩阵。除此之外,还要对状态向量做约简。因此,一个完整的粗粒化过程需要同时考虑状态、转移矩阵、状态向量的粗粒化。于是,这就引出了一个新的问题,即状态分组得到的新马尔科夫链中的转移概率应该如何计算?同时,归一化条件是否能够得到保证?
   −
除了这些基本保证之外,还要求对转移矩阵的粗粒化操作与马尔科夫链是可交换的,这能够保证经过粗粒化后的状态向量经过粗粒化后的转移矩阵(相当于宏观动力学)的一步演化,是等价于先对状态向量进行一步转移矩阵演化(相当于微观动力学),之后再进行粗粒化的。这就同时为状态分组(状态的粗粒化过程)以及转移矩阵的粗粒化过程提出了要求。对于这一可交换性的要求,就导致人们提出了[[马尔科夫链可聚类性]]的要求。
+
除了这些基本保证之外,我们通常还要求对转移矩阵的粗粒化操作应该与转移矩阵是可交换的,这一条件能够保证经过粗粒化后的状态向量再经过粗粒化的转移矩阵(相当于宏观动力学)的一步演化,是等价于先对状态向量进行一步转移矩阵演化(相当于微观动力学),之后再进行粗粒化的。这就同时为状态分组(状态的粗粒化过程)以及转移矩阵的粗粒化过程提出了要求。这一可交换性的要求,就导致人们提出了[[马尔科夫链可聚类性]]的要求。
   −
针对任意的状态硬划分,我们可以定义所谓的可聚类性(lumpability)的概念。可聚类性(Lumpability)是一种对聚类的衡量,这个概念最早出现在Kemeny, Snell在1969年的有限马尔科夫链(Finite Markov Chains)<ref name=":33">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。可聚类性(Lumpability)就是一个数学条件,用来判断“对于某一种硬分块的微观状态分组分案,是否对微观状态转移矩阵是可约简的”。不管状态空间按照哪一个硬分块方案做分类,它都有对应后续的对转移矩阵和概率空间的粗粒化方案<ref>Buchholz, Peter. "Exact and ordinary lumpability in finite Markov chains." ''Journal of applied probability'' 31.1 (1994): 59-75.</ref>。接下来,我们给出正式的定义。
+
针对任意的状态硬划分,我们可以定义所谓的可聚类性(lumpability)的概念。可聚类性(Lumpability)是一种对聚类的衡量,这个概念最早出现在Kemeny, Snell在1969年的有限马尔科夫链(Finite Markov Chains)<ref name=":33">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。可聚类性(Lumpability)就是一个数学条件,用来判断“对于某一种硬分块的微观状态分组方案,是否对微观状态转移矩阵是可约简的”。不管状态空间按照哪一个硬分块方案做分类,它都有对应后续的对转移矩阵和概率空间的粗粒化方案<ref>Buchholz, Peter. "Exact and ordinary lumpability in finite Markov chains." ''Journal of applied probability'' 31.1 (1994): 59-75.</ref>。接下来,我们给出正式的定义。
   −
对给定分组方法'''<math>A=\{A_1, A_2, ... ,A_r\}</math>''' 可聚类的充分必要条件为:
+
对给定分组方法'''<math>A=\{A_1, A_2, ... ,A_r\}</math>''' ,这里[math]A_i[/math]是状态空间A的任意一个子集,且满足:[math]A_i\intersection A_j\neq \Phi[/math],这里[math]\Phi[/math]表示空集。则可聚类的充分必要条件为:
    
设<math>p_{s_k \rightarrow s_m} = p(s^{(t)} = s_m | s^{(t-1)} = s_k)</math>,<math>p_{s_k \rightarrow A_i} = p(s^{(t)} \in A_i | s^{(t-1)} = s_k)</math>
 
设<math>p_{s_k \rightarrow s_m} = p(s^{(t)} = s_m | s^{(t-1)} = s_k)</math>,<math>p_{s_k \rightarrow A_i} = p(s^{(t)} \in A_i | s^{(t-1)} = s_k)</math>
727

个编辑

导航菜单