更改

跳到导航 跳到搜索
添加10字节 、 2024年11月12日 (星期二)
无编辑摘要
第105行: 第105行:  
===基于有效信息的因果涌现理论===
 
===基于有效信息的因果涌现理论===
 
历史上,第一个比较完整而明确的利用因果来定义涌现的定量理论当属 [[Erik Hoel]], [[Larissa Albantakis]] 以及 [[Giulio Tononi]] 三人提出的因果涌现理论<ref name=":0" /><ref name=":1" />。该理论针对[[马尔科夫链]]定义所谓的因果涌现为:粗粒化后的马尔科夫链比原始的马尔科夫链具有更大的因果效应强度的现象。这里,因果效应强度是通过[[有效信息]]来衡量的,该指标是对[[互信息]]指标的一种改造,主要差别是将 <math>t</math> 时刻的状态变量进行了 [[do 干预]],干预成了[[均匀分布]](或[[最大熵分布]])。[[有效信息]]指标早在2003年就被 [[Giulio Tononi]] 在研究[[整合信息论]]的时候提出,作为 [[Giulio Tononi]] 的学生 [[Erik Hoel]] 将有效信息应用到马尔科夫链中,提出了基于有效信息的因果涌现理论。
 
历史上,第一个比较完整而明确的利用因果来定义涌现的定量理论当属 [[Erik Hoel]], [[Larissa Albantakis]] 以及 [[Giulio Tononi]] 三人提出的因果涌现理论<ref name=":0" /><ref name=":1" />。该理论针对[[马尔科夫链]]定义所谓的因果涌现为:粗粒化后的马尔科夫链比原始的马尔科夫链具有更大的因果效应强度的现象。这里,因果效应强度是通过[[有效信息]]来衡量的,该指标是对[[互信息]]指标的一种改造,主要差别是将 <math>t</math> 时刻的状态变量进行了 [[do 干预]],干预成了[[均匀分布]](或[[最大熵分布]])。[[有效信息]]指标早在2003年就被 [[Giulio Tononi]] 在研究[[整合信息论]]的时候提出,作为 [[Giulio Tononi]] 的学生 [[Erik Hoel]] 将有效信息应用到马尔科夫链中,提出了基于有效信息的因果涌现理论。
 +
    
===基于信息分解的因果涌现理论===
 
===基于信息分解的因果涌现理论===
第294行: 第295行:     
=====具体实例=====
 
=====具体实例=====
 +
 +
 
[[文件:Gamma例子.png|居左|500x500像素|<math>EI</math>与<math>\Gamma</math>对比]]
 
[[文件:Gamma例子.png|居左|500x500像素|<math>EI</math>与<math>\Gamma</math>对比]]
   第418行: 第421行:     
在该工作中,输入的是时间序列数据 <math>(X_1,X_2,...,X_T ) </math>,且<math>X_t\equiv (X_t^1,X_t^2,…,X_t^p ) </math>,<math>p </math> 表示输入数据的维数。作者假设,这组数据是由一个一般的[[随机动力系统]]产生:
 
在该工作中,输入的是时间序列数据 <math>(X_1,X_2,...,X_T ) </math>,且<math>X_t\equiv (X_t^1,X_t^2,…,X_t^p ) </math>,<math>p </math> 表示输入数据的维数。作者假设,这组数据是由一个一般的[[随机动力系统]]产生:
 +
    
<math>\frac{d X}{d t}=f(X(t), \xi) </math>
 
<math>\frac{d X}{d t}=f(X(t), \xi) </math>
 +
    
其中 [math]X(t)[/math] 是微观状态变量,[math]f[/math] 是微观动力学,<math>\xi </math> 表示系统动力学中的噪音,可以建模动力系统中的随机特性。但是,<math>f</math> 是未知的。
 
其中 [math]X(t)[/math] 是微观状态变量,[math]f[/math] 是微观动力学,<math>\xi </math> 表示系统动力学中的噪音,可以建模动力系统中的随机特性。但是,<math>f</math> 是未知的。
第562行: 第567行:     
这些实验表明 NIS+ 不仅可以辨识数据中的因果涌现、发现涌现的宏观动力学和粗粒化策略,而且另外的实验还表明,[[NIS+]] 模型还能够通过 EI 最大化而增加模型的分布外泛化能力。
 
这些实验表明 NIS+ 不仅可以辨识数据中的因果涌现、发现涌现的宏观动力学和粗粒化策略,而且另外的实验还表明,[[NIS+]] 模型还能够通过 EI 最大化而增加模型的分布外泛化能力。
 +
    
==应用==
 
==应用==
第701行: 第707行:     
例如,就用东方哲学中的[[五行]]概念来说,我们完全可以将[[五行]]理解成万事万物的五种宏观态,而[[五行]]的相生相克关系就可以被理解为是这五种宏观态彼此之间的一种宏观因果机制。那么,从万事万物中提炼出[[五行]]这五种状态的认知过程,就是一种粗粒化过程,它依赖于观察者的类象能力。因此,五行理论就可以看作是对万事万物进行抽象的因果涌现理论。同样的,我们还可以将因果涌现的概念应用到更多领域,包括中医、占卜、风水等。这些应用的共同点将会是,它的因果机制相对于西方科学更加简单,也有可能因果性更强,但是得到这种抽象的粗粒化过程则更加复杂,更加依赖于有经验的抽象者。这就解释了为什么东方哲学都强调实践者自身的修为,这是因为,这些东方哲学理论将巨大的复杂性和计算量都放到了'''类象思维'''上。
 
例如,就用东方哲学中的[[五行]]概念来说,我们完全可以将[[五行]]理解成万事万物的五种宏观态,而[[五行]]的相生相克关系就可以被理解为是这五种宏观态彼此之间的一种宏观因果机制。那么,从万事万物中提炼出[[五行]]这五种状态的认知过程,就是一种粗粒化过程,它依赖于观察者的类象能力。因此,五行理论就可以看作是对万事万物进行抽象的因果涌现理论。同样的,我们还可以将因果涌现的概念应用到更多领域,包括中医、占卜、风水等。这些应用的共同点将会是,它的因果机制相对于西方科学更加简单,也有可能因果性更强,但是得到这种抽象的粗粒化过程则更加复杂,更加依赖于有经验的抽象者。这就解释了为什么东方哲学都强调实践者自身的修为,这是因为,这些东方哲学理论将巨大的复杂性和计算量都放到了'''类象思维'''上。
 +
    
==批判==
 
==批判==
第738行: 第745行:     
不过,虽然机器学习技术促进了因果关系与因果机制的学习,以及对涌现属性的识别,但重要的是通过机器学习获得的结果是否反映了本体论的因果关系和涌现,或者它们仅仅是一种认识论现象?这一点则尚无定论。尽管机器学习的引入不一定能解决围绕本体论和认识论因果关系和涌现的争论问题,但它可以提供有助于减轻主观性的依赖。这是因为机器学习主体可以被视为一个“客观”的观察者,对因果关系和涌现做出判断,这种判断是独立于人类观察者的。然而,唯一解的问题在这一方法中仍然存在。机器学习的结果是本体论还是认识论的?答案是,结果是认识论的,其中认识主体是机器学习算法。然而,这并不意味着机器学习的所有结果都是无意义的,因为如果学习的主体得到了良好的训练,并且定义的数学目标得到了有效的优化,那么结果也可以被认为是客观的,因为算法本身是客观的,且透明的。结合机器学习方法可以帮助我们建立观察者的理论框架,并研究观察者与相应的被观察复杂系统之间的相互作用。
 
不过,虽然机器学习技术促进了因果关系与因果机制的学习,以及对涌现属性的识别,但重要的是通过机器学习获得的结果是否反映了本体论的因果关系和涌现,或者它们仅仅是一种认识论现象?这一点则尚无定论。尽管机器学习的引入不一定能解决围绕本体论和认识论因果关系和涌现的争论问题,但它可以提供有助于减轻主观性的依赖。这是因为机器学习主体可以被视为一个“客观”的观察者,对因果关系和涌现做出判断,这种判断是独立于人类观察者的。然而,唯一解的问题在这一方法中仍然存在。机器学习的结果是本体论还是认识论的?答案是,结果是认识论的,其中认识主体是机器学习算法。然而,这并不意味着机器学习的所有结果都是无意义的,因为如果学习的主体得到了良好的训练,并且定义的数学目标得到了有效的优化,那么结果也可以被认为是客观的,因为算法本身是客观的,且透明的。结合机器学习方法可以帮助我们建立观察者的理论框架,并研究观察者与相应的被观察复杂系统之间的相互作用。
 +
    
==相关研究领域==
 
==相关研究领域==
第792行: 第800行:     
关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
 
关于具体的粗粒化马尔科夫链的方法,请参考[[马尔科夫链的粗粒化]]。
 +
    
==参考文献==
 
==参考文献==
第816行: 第825行:  
*[https://pattern.swarma.org/study_group/28 因果涌现读书会第三季]
 
*[https://pattern.swarma.org/study_group/28 因果涌现读书会第三季]
 
因果涌现第三季的读书会中,将进一步围绕因果涌现的核心研究问题『因果涌现的定义』以及『因果涌现的辨识』来进行深入的学习和讨论,对 Erik Hoel 提出的 Causal Emergence,Causal Geometry 等因果涌现的核心理论进行深入的探讨和剖析,并且详细梳理其中涉及到的方法论,包括从动力学约简、隐空间动力学学习等其他研究领域中学习和借鉴相关的研究思路,最后探讨因果涌现的应用,包括基于生物网络、脑网络或者涌现探测等问题展开扩展,发掘更多的实际应用场景。
 
因果涌现第三季的读书会中,将进一步围绕因果涌现的核心研究问题『因果涌现的定义』以及『因果涌现的辨识』来进行深入的学习和讨论,对 Erik Hoel 提出的 Causal Emergence,Causal Geometry 等因果涌现的核心理论进行深入的探讨和剖析,并且详细梳理其中涉及到的方法论,包括从动力学约简、隐空间动力学学习等其他研究领域中学习和借鉴相关的研究思路,最后探讨因果涌现的应用,包括基于生物网络、脑网络或者涌现探测等问题展开扩展,发掘更多的实际应用场景。
 +
    
===路径推荐===
 
===路径推荐===
150

个编辑

导航菜单