更改

跳到导航 跳到搜索
删除1,877字节 、 2020年5月18日 (一) 16:11
第266行: 第266行:  
网络模型是理解经验上复杂网络内相互作用的基础,各种各样的[[随机图]]生成模型生成的网络结构可与现实中的复杂网络进行比较。
 
网络模型是理解经验上复杂网络内相互作用的基础,各种各样的[[随机图]]生成模型生成的网络结构可与现实中的复杂网络进行比较。
   −
  −
=== Erdős–Rényi random graph model ===
  −
[[File:ER model.svg|thumb|This [[Erdős–Rényi model]] is generated with {{math|<VAR>N</VAR> {{=}} 4}} nodes. For each edge in the complete graph formed by all {{mvar|N}} nodes, a random number is generated and compared to a given probability. If the random number is less than {{mvar|p}}, an edge is formed on the model.]]
  −
The '''[[Erdős–Rényi model]]''', named for [[Paul Erdős]] and [[Alfréd Rényi]], is used for generating [[random graph]]s in which edges are set between nodes with equal probabilities. It can be used in the [[probabilistic method]] to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs.
  −
  −
To generate an Erdős–Rényi model <math>G(n, p)
  −
  −
</math> two parameters must be specified: the total number of nodes {{mvar|n}} and the probability {{mvar|p}} that a random pair of nodes has an edge.
  −
  −
Because the model is generated without bias to particular nodes, the degree distribution is binomial: for a randomly chosen vertex <math>v</math>,
  −
: <math>P(\deg(v) = k) = {n-1\choose k} p^k (1-p)^{n-1-k}.</math>
  −
  −
In this model the clustering coefficient is {{math|0}} [[Almost surely|a.s]]. The behavior of <math>G(n, p)
  −
  −
</math>  can be broken into three regions.
  −
  −
''Subcritical'' <math>n p < 1
  −
  −
</math>: All components are simple and very small, the largest component has size <math>|C_1| = O(\log n)
  −
  −
</math>;
  −
  −
''Critical'' <math>n p = 1
  −
  −
</math>: <math>|C_1| = O(n^\frac{2}{3})
  −
  −
</math>;
  −
  −
''Supercritical'' <math>n p >1
  −
  −
</math>:<math>|C_1| \approx yn
  −
</math> where <math>y = y(n p)
  −
  −
</math> is the positive solution to the equation <math>e^{-p n y }=1-y
  −
  −
</math>.
  −
  −
The largest connected component has high complexity. All other components are simple and small <math>|C_2| = O(\log n)
  −
  −
</math>.
      
=== Erdős–Rényi 随机图模型 ===
 
=== Erdős–Rényi 随机图模型 ===
198

个编辑

导航菜单