更改

跳到导航 跳到搜索
删除19字节 、 2020年5月19日 (二) 13:46
第84行: 第84行:  
Often, networks have certain attributes that can be calculated to analyze the properties & characteristics of the network. The behavior of these network properties often define [[network model]]s and can be used to analyze how certain models contrast to each other. Many of the definitions for other terms used in network science can be found in [[Glossary of graph theory]].
 
Often, networks have certain attributes that can be calculated to analyze the properties & characteristics of the network. The behavior of these network properties often define [[network model]]s and can be used to analyze how certain models contrast to each other. Many of the definitions for other terms used in network science can be found in [[Glossary of graph theory]].
   −
通常,网络具有一些可计算的属性来分析网络的性质和特征。 这些网络属性的特征通常被定义为[[网络模型]] ,可用于对比分析不同模型之间的差异。 网络科学中使用的许多其他术语的定义可以在[[图论术语表]]''Glossary of graph theory''中找到。
+
通常,网络具有一些可计算的属性来分析网络的性质和特征。这些网络性质的特征通常被定义为[[网络模型]] ,可用于对比分析不同模型之间的差异。网络科学中使用的许多其他术语可以在[[图论术语表]]''Glossary of graph theory''中找到相关定义。
 
      
=== 规模 ===
 
=== 规模 ===
 
The size of a network can refer to the number of nodes <math>N</math> or, less commonly, the number of edges <math>E</math> which (for connected graphs with no multi-edges) can range from <math>N-1</math> (a tree) to <math>E_{\max}</math> (a complete graph). In the case of a simple graph (a network in which at most one (undirected) edge exists between each pair of vertices, and in which no vertices connect to themselves), we have <math>E_{\max}=\tbinom N2=N(N-1)/2</math>; for directed graphs (with no self-connected nodes), <math>E_{\max}=N(N-1)</math>; for directed graphs with self-connections allowed, <math>E_{\max}=N^2</math>. In the circumstance of a graph within which multiple edges may exist between a pair of vertices, <math>E_{\max}=\infty</math>.
 
The size of a network can refer to the number of nodes <math>N</math> or, less commonly, the number of edges <math>E</math> which (for connected graphs with no multi-edges) can range from <math>N-1</math> (a tree) to <math>E_{\max}</math> (a complete graph). In the case of a simple graph (a network in which at most one (undirected) edge exists between each pair of vertices, and in which no vertices connect to themselves), we have <math>E_{\max}=\tbinom N2=N(N-1)/2</math>; for directed graphs (with no self-connected nodes), <math>E_{\max}=N(N-1)</math>; for directed graphs with self-connections allowed, <math>E_{\max}=N^2</math>. In the circumstance of a graph within which multiple edges may exist between a pair of vertices, <math>E_{\max}=\infty</math>.
   −
网络的规模可以由节点的个数<math>N</math>,或者,少数情况下,连边的数量<math>E</math>(对于没有重边的连通图),连边的个数E的范围一般是从<math>N-1</math> (看做是一个树)到<math>E_{\max}</math> (看做是一个完全图)。在简单图的例子中(网络中在每对节点之间至多存在一条(无向)边,并且没有节点连向自己),可以计算<math>E_{\max}=\tbinom N2=N(N-1)/2</math>;对于有向图(没有自环self-connected的节点),<math>E_{\max}=N(N-1)</math>;对于有向图且允许存在自环的节点,<math>E_{\max}=N^2</math>.还有另外一种特殊情况就是一对节点之间存在重边, <math>E_{\max}=\infty</math>.
+
网络的规模可以指节点的个数<math>N</math>,或者,少数情况下,连边的数量<math>E</math>(对于没有重边的连通图),连边的数量<math>E</math>一般从<math>N-1</math> (看做是一个树)到<math>E_{\max}</math> (看做是一个完全图)不等。在简单图(网络中在每对节点之间至多存在一条(无向)边,并且没有节点连向自己)的例子中,可以计算<math>E_{\max}=\tbinom N2=N(N-1)/2</math>;对于有向图(没有自环节点)而言,<math>E_{\max}=N(N-1)</math>;对于有向图且允许存在自环节点的,<math>E_{\max}=N^2</math>。而对于一对节点之间存在重边的情况,<math>E_{\max}=\infty</math>
    
=== 密度 Density ===
 
=== 密度 Density ===
198

个编辑

导航菜单